【題目】變形與求值
(1)通分: ,
(2)求值: ,其中x=1,y=﹣
(3)不改變分式的值,變形使分式 的分子與分母的最高次項的系數(shù)是正數(shù).

【答案】
(1)解:通分: ,
(2)解:原式= ,

將x=1, 代入得,

原式=


(3)解:原式= =
【解析】(1)根據(jù)通分的方法,先找出最簡公分母即可解答本題;(2)先化簡題目中的式子,然后將x、y的值代入即可解答本題;(3)先對題目中的式子變形即可解答本題.
【考點精析】利用通分的定義對題目進行判斷即可得到答案,需要熟知把異分母分式化為同分母分式; 同時必須使化得的分式和原來的分式分別相等; 通分的根據(jù)是分式的基本性質(zhì),且取各分式分母的最簡公分母,否則使運算變得煩瑣.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四個正方形拼接成的圖形中,以A1、A2、A3、…、A10這十個點中任意三點為頂點,共能組成個等腰直角三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,OC是∠AOD的平分線,OE是∠BOD的平分線.

(1)若∠AOB=120°,則∠COE是多少度?
(2)若∠EOC=65°,∠DOC=25°,則∠BOE是多少度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,點P在DC邊上且DP=1,點Q是AC上一動點,則DQ+PQ的最小值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題中,真命題是( ) .

A. 對角線相等的四邊形是矩形;

B. 對角線互相垂直的四邊形是菱形;

C. 對角線互相平分的四邊形是平行四邊形;

D. 對角線互相垂直平分的四邊形是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將拋物線y=x2向左平移2個單位,再向下平移1個單位,所得拋物線為(  )

A. y=(x﹣2)2﹣1 B. y=(x﹣2)2+1 C. y=(x+2)2﹣1 D. y=(x+2)2+1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料:如圖1,圓的概念:在平面內(nèi),線段PA繞它固定的一個端點P旋轉(zhuǎn)一周,另一個端點A所形成的圖形叫做圓.就是說,到某個定點等于定長的所有點在同一個圓上.圓心在P(a,b),半徑為r的圓的方程可以寫為:(x-a)2+(y-b)2=r2.如:圓心在P(2,-1),半徑為5的圓的方程為:(x-2)2+(y+1)2=25.

(1)填空: ①以A(3,0)為圓心,1為半徑的圓的方程為:________; ②以B(-1,-2)為圓心, 為半徑的圓的方程為:________;

(2)根據(jù)以上材料解決以下問題:

如圖2,B(-6,0)為圓心的圓與y軸相切于原點,C是☉B上一點,連接OC,BDOC垂足為D,延長BDy軸于點E,已知sinAOC=.

①連接EC,證明EC是☉B的切線;

②在BE上是否存在一點P,使PB=PC=PE=PO,若存在,P點坐標,并寫出以P為圓心,PB為半徑的☉P的方程;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90,CD⊥AB,垂足為D,tan∠ACD=,AB=5,那么CD的長是_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中秋佳節(jié)我國有賞月和吃月餅的傳統(tǒng),英才學校數(shù)學興趣小組為了了解本校學生喜愛月餅的情況,隨機抽取了60名同學進行問卷調(diào)查,經(jīng)過統(tǒng)計后繪制了兩幅尚不完整的統(tǒng)計圖.(注:參與問卷調(diào)查的每一位同學在任何一種分類統(tǒng)計中只有一種選擇)請根據(jù)統(tǒng)計圖完成下列問題:

(1)扇形統(tǒng)計圖中,“很喜歡”的部分所對應的圓心角為  度;條形統(tǒng)計圖中,“很喜歡”月餅中喜歡“豆沙”月餅的學生有  人;

(2)若該校共有學生1200人,請根據(jù)上述調(diào)查結(jié)果,估計該校學生中“很喜歡”月餅的有  人.

(3)李民同學最愛吃蓮蓉月餅,陳麗同學最愛吃豆沙月餅,現(xiàn)有重量、包裝完全一樣的豆沙、蓮蓉、蛋黃

三種月餅各一個,讓李民、陳麗每人各選一個,則李民、陳麗兩人都選中自己最愛吃的月餅的概率為

查看答案和解析>>

同步練習冊答案