【題目】如圖,平行四邊形ABCD的對角線AC、BD交于點(diǎn)O,點(diǎn)E在邊CB的延長線上,且∠EAC=90°,AE2=EBEC.
(1)求證:四邊形ABCD是矩形;
(2)延長DB、AE交于點(diǎn)F,若AF=AC,求證:AE=BF.
【答案】(1)見解析;(2)見解析
【解析】
(1)根據(jù)AE2=EBEC證明△AEB∽△CEA,即可得到∠EBA=∠EAC=90°,從而說明平行四邊形ABCD是矩形;
(2)根據(jù)(1)中△AEB∽△CEA可得,再證明△EBF∽△BAF可得,結(jié)合條件AF=AC,即可證AE=BF.
證明:(1)∵AE2=EBEC
∴
又∵∠AEB=∠CEA
∴△AEB∽△CEA
∴∠EBA=∠EAC
而∠EAC=90°
∴∠EBA=∠EAC=90°
又∵∠EBA+∠CBA=180°
∴∠CBA=90°
而四邊形ABCD是平行四邊形
∴四邊形ABCD是矩形
即得證.
(2)∵△AEB∽△CEA
∴即,∠EAB=∠ECA
∵四邊形ABCD是矩形
∴OB=OC
∴∠OBC=∠ECA
∴∠EBF=∠OBC=∠ECA=∠EAB
即∠EBF=∠EAB
又∵∠F=∠F
∴△EBF∽△BAF
∴
∴
而AF=AC
∴BF=AE
即AE=BF得證.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形ABCD中,AB∥CD,AB=24cm,DC=10cm,點(diǎn)P和Q同時(shí)從D、B出發(fā),P由D向C運(yùn)動(dòng),速度為每秒1cm,點(diǎn)Q由B向A運(yùn)動(dòng),速度為每秒3cm,試求幾秒后,P、Q和梯形ABCD的兩個(gè)頂點(diǎn)所形成的四邊形是平行四邊形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電器上銷售一種微波爐和電磁爐,微波爐每臺定價(jià)元,電磁爐每臺定價(jià)元,“十一”期間商場決定開展促銷活動(dòng),活動(dòng)期間向客戶提供兩種優(yōu)惠方案;
方案一:買一臺微波爐送一臺電磁爐;
方案二:微波爐和電磁爐都按定價(jià)的付款;
現(xiàn)某客戶要到該賣場購買微波爐臺,電磁爐臺
(1)若該客戶按方案一、方案二購買,分別需付款多少元?(用含的式子表示)
(2)若,通過計(jì)算說明此時(shí)那種方案購買較為核算?
(3)當(dāng)時(shí),你能給出一種更為省錢的購買方案嗎?試寫出你的購買方法,并計(jì)算需付款多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的一元二次方程ax2+bx﹣1=0(a≠0)有一根為x=2019,則一元二次方程a(x﹣1)2+b(x﹣1)=1必有一根為( 。
A.B.2020C.2019D.2018
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB為⊙O的直徑,AB=2,AD和BE是圓O的兩條切線,A、B為切點(diǎn),過圓上一點(diǎn)C作⊙O的切線CF,分別交AD、BE于點(diǎn)M、N,連接AC、CB,若∠ABC=30°,則AM= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(背景知識)數(shù)軸上A、B兩點(diǎn)在數(shù)軸上對應(yīng)的數(shù)為a、b,則A、B兩點(diǎn)之間的距離定義為:AB=|b-a|.
(問題情境)已知點(diǎn)A、B、O在數(shù)軸上表示的數(shù)分別為-6、10和0,點(diǎn)M、N分別從O、B出發(fā),同時(shí)向左勻速運(yùn)動(dòng),點(diǎn)M的速度是每秒1個(gè)單位長度,點(diǎn)N的速度是每秒3個(gè)單位長度,設(shè)運(yùn)動(dòng)的時(shí)間為t秒(t>0),
(1)填空:①OA= .OB= ;
②用含t的式子表示:AM= ;AN= ;
(2)當(dāng)t為何值時(shí),恰好有AN=2AM;
(3)求|t-6|+|t+10|的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O是等邊內(nèi)一點(diǎn),,,點(diǎn)D是等邊△ABC外一點(diǎn),∠OCD=60°,OC=OD,連接OD、AD.
(1)求的度數(shù)(用含α的式子表示)
(2)求證:;
(3)探究:當(dāng)α為多少度時(shí),是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=﹣x+m分別交x軸,y軸于A,B兩點(diǎn),已知點(diǎn)C(2,0).
(1)當(dāng)直線AB經(jīng)過點(diǎn)C時(shí),點(diǎn)O到直線AB的距離是 ;
(2)設(shè)點(diǎn)P為線段OB的中點(diǎn),連結(jié)PA,PC,若∠CPA=∠ABO,則m的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明所在的學(xué)校加強(qiáng)學(xué)生的體育鍛煉,準(zhǔn)備從某體育用品商店一次購買若干個(gè)足球和籃球(每個(gè)足球的價(jià)格相同,每個(gè)籃球的價(jià)格相同),若購買2個(gè)籃球和3個(gè)足球共需310元,購買5個(gè)籃球和2個(gè)足球共需500元.
(1)每個(gè)籃球和足球各需多少元?
(2)根據(jù)實(shí)際情況,需從該商店一次性購買籃球和足球功60個(gè),要求購買籃球和足球的總費(fèi)用不超過4000元,那么最多可以購買多少個(gè)籃球?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com