【題目】如圖,在△EBD中,EB=ED,點(diǎn)C在BD上,CE=CD,BE⊥CE,A是CE延長線上一點(diǎn),EA=EC.
(1)求∠EBC的度數(shù);
(2)求證△ABC為等邊三角形.
【答案】(1)30°;(2)見解析
【解析】
(1)根據(jù)等腰三角形的性質(zhì)和外角的性質(zhì)進(jìn)行解答即可;
(2)因?yàn)?/span>EB=ED,CE=CD,所以可求得∠ECB=2∠EBC,又因?yàn)?/span>BE⊥CE,則∠ECB=60°,AB=BC,故△ABC是等邊三角形.
(1)∵CE=CD,
∴∠D=∠DEC,
∴∠ECB=∠D+∠DEC=2∠D.
∵BE=DE,
∴∠EBC=∠D.
∴∠ECB=2∠EBC.
又∵BE⊥CE,
∴∠ECB=60°.
∵∠ECB=∠CED+∠EDC,
∴∠EDC=30°,
∵EB=ED,
∴∠EBC=∠EDC=30°.
(2)證明∵CE=CD,
∴∠D=∠DEC,
∴∠ECB=∠D+∠DEC=2∠D.
∵BE=DE,
∴∠EBC=∠D.
∴∠ECB=2∠EBC.
又∵BE⊥CE,
∴∠ECB=60°.
∵BE⊥CE,AE=CE,
∴AB=BC.
∴△ABC是等邊三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品現(xiàn)在售價(jià)為每件40元,每天可賣200件,該商品將從現(xiàn)在起進(jìn)行90天的銷售:在第x(1≤x≤49)天內(nèi),當(dāng)天售價(jià)都較前一天增加1元,銷量都較前一天減少2件;在x(50≤x≤90)天內(nèi),當(dāng)天的售價(jià)都是90元,銷售仍然是較前一天減少2件,已知該商品的進(jìn)價(jià)為每件30元,設(shè)銷售商品的當(dāng)天利潤為y元.
(1)求出y與x的函數(shù)關(guān)系式;
(2)銷售該商品第幾天時(shí),當(dāng)天銷售利潤最大,最大利潤是多少?
(3)該商品在銷售過程中,共有多少天當(dāng)天銷售利潤不低于4800元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某數(shù)學(xué)興趣小組在活動(dòng)課上測(cè)量學(xué)校旗桿的高度.已知小亮站著測(cè)量,眼睛與地面的距離(AB)是1.7米,看旗桿頂部E的仰角為30°;小敏蹲著測(cè)量,眼睛與地面的距離(CD)是0.7米,看旗桿頂部E的仰角為45°.兩人相距5米且位于旗桿同側(cè)(點(diǎn)B、D、F在同一直線上).
(1)求小敏到旗桿的距離DF.(結(jié)果保留根號(hào))
(2)求旗桿EF的高度.(結(jié)果保留整數(shù),參考數(shù)據(jù):≈1.4,≈1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是用4個(gè)全等的直角三角形與1個(gè)小正方形鑲嵌而成的正方形圖案,已知大正方形面積為49,小正方形面積為4,若用,表示直角三角形的兩直角邊(),下列四個(gè)說法:
①,②,③,④.
其中說法正確的是 …………………………………………………………( )
A. ①② B. ①②③ C. ①②④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,BC=4,△ABC的面積是16,AC邊的垂直平分線EF分別交AC,AB邊于點(diǎn)E,F. 若點(diǎn)D為BC邊的中點(diǎn),點(diǎn)M為線段EF上一動(dòng)點(diǎn),則△CDM周長的最小值為()
A.4B.5C.10D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,根據(jù)圖象解答下列問題.
(1)寫出方程ax2+bx+c=0的兩個(gè)根;
(2)寫出不等式ax2+bx+c>0的解集;
(3)寫出y隨x的增大而減小的自變量x的取值范圍;
(4)若方程ax2+bx+c=k有兩個(gè)不相等的實(shí)數(shù)根,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某移動(dòng)通訊公司有兩種移動(dòng)電話計(jì)費(fèi)方式,這兩種計(jì)費(fèi)方式中月使用費(fèi)y(元)與主叫時(shí)間x(分)的對(duì)應(yīng)關(guān)系如圖所示:(主叫時(shí)間不到1分鐘,按1分鐘收費(fèi))下列三個(gè)判斷中正確的是( )
①方式一每月主叫時(shí)間為300分鐘時(shí),月使用費(fèi)為88元
②每月主叫時(shí)間為350分鐘和600分鐘時(shí),兩種方式收費(fèi)相同
③每月主叫時(shí)間超過600分鐘,選擇方式一更省錢
A. ①② B. ①③ C. ②③ D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形底邊的長為,面積是,腰的垂直平分線交于點(diǎn),若為邊上的中點(diǎn),為線段上一動(dòng)點(diǎn),則的周長的最小值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點(diǎn)B,與直線l的另一個(gè)交點(diǎn)為C(4,n).
(1)求n的值和拋物線的解析式;
(2)點(diǎn)D在拋物線上,DE∥y軸交直線l于點(diǎn)E,點(diǎn)F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點(diǎn)D的橫坐標(biāo)為t(0<t<4),矩形DFEG的周長為p,求p與t的函數(shù)關(guān)系式以及p的最大值;
(3)將△AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°或180°,得到△A1O1B1,點(diǎn)A、O、B的對(duì)應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1.若△A1O1B1的兩個(gè)頂點(diǎn)恰好落在拋物線上,那么我們就稱這樣的點(diǎn)為“落點(diǎn)”,請(qǐng)直接寫出“落點(diǎn)”的個(gè)數(shù)和旋轉(zhuǎn)180°時(shí)點(diǎn)A1的橫坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com