【題目】在直角坐標(biāo)系中,已知點,,,a是的立方根,方程是關(guān)于x,y的二元一次方程,d為不等式組的最大整數(shù)解.
求點A、B、C的坐標(biāo);
如圖1,若D為y軸負(fù)半軸上的一個動點,當(dāng)時,與的平分線交于M點,求的度數(shù);
如圖2,若D為y軸負(fù)半軸上的一個動點,連BD交x軸于點E,問是否存在點D,使?若存在,請求出D的縱坐標(biāo)的取值范圍;若不存在,請說明理由.
【答案】、、;;存在,的縱坐標(biāo)的取值范圍是.
【解析】
根據(jù)立方根的概念、二元一次方程組的定義、一元一次不等式組的解法分別求出a、b、c、d,得到點A、B、C的坐標(biāo);
作,根據(jù)平行線的性質(zhì)得到,得到,根據(jù)角平分線的定義得到,根據(jù)平行線的性質(zhì)計算即可;
連AB交y軸于F,根據(jù)題意求出點F的坐標(biāo),根據(jù)三角形的面積公式列出方程,解方程即可.
的立方根是,
,
方程是關(guān)于x,y的二元一次方程,
,
解得,,
不等式組的最大整數(shù)解是5,
則、、;
作,
,
,
,
,
,
,
,
與的平分線交于M點,
,,
,
,,
,,
;
存在,
連AB交y軸于F,
設(shè)點D的縱坐標(biāo)為,
,
,即,
,,,
,點F的坐標(biāo)為,
,
由題意得,,
解得,,
在y軸負(fù)半軸上,
,
的縱坐標(biāo)的取值范圍是.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖AO和BD相交于點O,E是CD上一點,F是OD上一點,EF∥OC,∠1=∠A
(1)試判斷AB和CD的位置關(guān)系,并說明理由;
(2)若∠B=50°,∠1=65°,求∠DOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法:①若|a|=-b,|b|=b,則a=b=0;②若-a不是正數(shù),則a為非負(fù)數(shù);③|-a|=(-a); ④若,則; ⑤若a+b=0,則a3+b3=0; ⑥若|a|>b,則a2>b2;其中正確的結(jié)論有( 。
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l過正方形ABCD的頂點B,點A、C至直線l的距離分別為2和3,則此正方形的面積為( )
A. 5 B. 6 C. 9 D. 13
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長青化工廠與A、B兩地有公路、鐵路相連.這家工廠從A地購買一批每噸1000元的原料運回工廠,制成每噸8000元的產(chǎn)品運到B地.已知公路運價為1.5元/(噸·千米),鐵路運價為1.2元/(噸·千米),且這兩次運輸共支出公路運輸費15000元,鐵路運輸費97200元.
求:(1)該工廠從A地購買了多少噸原料?制成運往B地的產(chǎn)品多少噸?
(2)這批產(chǎn)品的銷售款比原料費與運輸費的和多多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的對角線交點為O,正方形OEFG的邊長與正方形ABCD的邊長相等,若將正方形OEFG繞點O旋轉(zhuǎn),試說明旋轉(zhuǎn)到如圖的位置時,兩正方形重疊部分的面積與正方形面積之間的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某人用元購買了套兒童服裝,準(zhǔn)備以一定價格出售,如果以每套兒童服裝元的價格為標(biāo)準(zhǔn),超出的記作正數(shù),不足的記作負(fù)數(shù),記錄如下:,,,,,,,.(單位:元)
(1)最高售價比最低高出多少?
(2)當(dāng)他賣完這套兒童服裝后是盈利還是虧損?盈利(或虧損)了多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AC與BD交于點M,點F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,點E是BC的中點,若點P以1cm/s秒的速度從點A出發(fā),沿AD向點F運動;點Q同時以2cm/秒的速度從點C出發(fā),沿CB向點B運動,點P運動到F點時停止運動,點Q也同時停止運動,當(dāng)點P運動__秒時,以P、Q、E、F為頂點的四邊形是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線AB分別交x、y軸于點A、B,直線BC分別交x、y軸于點C、B,點A的坐標(biāo)為(2,0),∠ABO=30°,且AB⊥BC.
(1)求直線BC和AB的解析式;
(2)將點B沿某條直線折疊到點O,折痕分別交BC、BA于點E、D,在x軸上是否存在點F,使得點D、E、F為頂點的三角形是以DE為斜邊的直角三角形?若存在,請求出F點坐標(biāo);若不存在,請說明理由;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com