如圖,在四邊形ABCD中,對角線AC,BD交于點E,∠BAC=90°,∠CED=45°,∠DCE=30°,DE= ,BE=2.求CD的長和四邊形ABCD的面積.
2   
解:過點D作DH⊥AC,

∵∠CED=45°,DH⊥EC,DE=,
∴EH=DH,
∵EH2+DH2=ED2
∴EH2=1,
∴EH=DH=1,
又∵∠DCE=30°,
∴DC=2,HC=,
∵∠AEB=45°,∠BAC=90°,
BE=2
∴AB=AE=2,
∴AC=2+1+=3+,
∴S四邊形ABCD=×2×(3+)+×1×(3+)=
利用等腰直角三角形的性質得出EH=DH=1,進而得出再利用直角三角形中30°所對邊等于斜邊的一半得出CD的長,求出AC,AB的長即可得出四邊形ABCD的面積.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,在□ABCD中,延長AB到點E,使BE=AB,連接DE交BC于點F.
求證:△BEF ≌ △CDF

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,△ABC是等邊三角形,D是AB邊上的一點,以CD為邊作等邊△CDE,使點E、A在直線DC的同側,連接AE.
求證:AE∥BC.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如果Rt△兩直角邊的比為5:12,則斜邊上的高與斜邊的比為( 。
A.60:13B.5:12C.12:13D.60:169

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

直角三角形兩銳角的平分線相交所成的角的度數(shù)是(   )
A.B.C.D.以上答案都不對

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如果一個三角形的兩邊長分別是2、4,那么第三邊可能是(    )
A.2B.4C.6D.8

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖是一株美麗的勾股樹,其中所有的四邊形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面積分別為2,5,1,2.則最大的正方形E的面積是(        )

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

將一副直角三角板如圖擺放,點C在EF上,AC經(jīng)過點D.已知∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,則∠CDF=      

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,矩形ABCD中,E是AD的中點,將△ABE沿BE折疊后得到△GBE,延長BG交CD于F點,若CF=1,F(xiàn)D=2,則BC的長為(  )
A.3B.2C.2D.2

查看答案和解析>>

同步練習冊答案