1.若二次根式$\frac{{\sqrt{x+1}}}{x-1}$有意義,則x的取值范圍是x≥-1且x≠1.

分析 根據(jù)二次根式的性質(zhì)和分式的意義,被開(kāi)方數(shù)大于等于0,分母不等于0,就可以求解.

解答 解:由題意得,x+1≥0,x-1≠0,
解得,x≥-1且x≠1,
故答案為:x≥-1且x≠1.

點(diǎn)評(píng) 本題考查的是二次根式的性質(zhì)和分式的意義,掌握分式有意義,分母不為0;二次根式的被開(kāi)方數(shù)是非負(fù)數(shù)是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

11.如果二次函數(shù)y=-x2+bx+c的圖象頂點(diǎn)為(1,-3),那么b=2,c=-4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

12.在數(shù)軸上,點(diǎn)A、B分別表示5和-2,則線段AB的長(zhǎng)度是7.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知tanA=2,(0<A<90°),則cosA=$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,正方形ABCD的四個(gè)頂點(diǎn)分別在正方形EFGH的四條邊上,我們稱正方形EFGH是正方形ABCD的外接正方形.
探究一:已知邊長(zhǎng)為1的正方形ABCD,是否存在一個(gè)外接正方形EFGH,它的面積是正方形ABCD面積的2倍?如圖,假設(shè)存在正方形EFGH,它的面積是正方形ABCD的2倍.
因?yàn)檎叫蜛BCD的面積為1,則正方形EFGH的面積為2,
所以EF=FG=GH=HE=$\sqrt{2}$,設(shè)EB=x,則BF=$\sqrt{2}$-x,
∵Rt△AEB≌Rt△BFC
∴BF=AE=$\sqrt{2}$-x
在Rt△AEB中,由勾股定理,得
x2+($\sqrt{2}$-x)2=12
解得,x1=x2=$\frac{\sqrt{2}}{2}$
∴BE=BF,即點(diǎn)B是EF的中點(diǎn).
同理,點(diǎn)C,D,A分別是FG,GH,HE的中點(diǎn).
所以,存在一個(gè)外接正方形EFGH,它的面積是正方形ABCD面積的2倍
探究二:已知邊長(zhǎng)為1的正方形ABCD,是否存在一個(gè)外接正方形EFGH,它的面積是正方形ABCD面積的3倍?(仿照上述方法,完成探究過(guò)程)
探究三:已知邊長(zhǎng)為1的正方形ABCD,不存在一個(gè)外接正方形EFGH,它的面積是正方形ABCD面積的4倍?(填“存在”或“不存在”)
探究四:已知邊長(zhǎng)為1的正方形ABCD,是否存在一個(gè)外接正方形EFGH,它的面積是正方形ABCD面積的n倍?(n>2)(仿照上述方法,完成探究過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

6.比較3$\sqrt{3}$和2$\sqrt{11}$的大小是$3\sqrt{3}<2\sqrt{11}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知線段AB=3厘米,延長(zhǎng)BA到C使BC=5厘米,則AC的長(zhǎng)是(  )
A.2厘米B.8厘米C.3厘米D.11厘米

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知△ABC的三邊長(zhǎng)分別為5、12、13,則最長(zhǎng)邊上的中線長(zhǎng)為$\frac{13}{2}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.下列函數(shù)中,一次函數(shù)一共有( 。﹤(gè).
(1)y=$\frac{2}{x}$+1;(2)y=kx+b;(3)y=3x;(4)y=(x+1)2-x2;(5)y=x2-2x+1.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案