【題目】如圖(1),在豫西南鄧州市大十字街西南方,聳立著一座古老建筑-福勝寺梵塔,建于北宋天圣十年(公元1032年),學(xué)完了三角函數(shù)知識(shí)后,某校“數(shù)學(xué)社團(tuán)”的劉明和王華決定用自己學(xué)到的知識(shí)測(cè)量“福勝寺梵塔”的高度.如圖(2),劉明在點(diǎn)C處測(cè)得塔頂B的仰角為45°,王華在高臺(tái)上的點(diǎn)D處測(cè)得塔頂B的仰角為40°,若高臺(tái)DE高為5米,點(diǎn)D到點(diǎn)C的水平距離EC為1.3米,且A、C、E三點(diǎn)共線,求該塔AB的高度.(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,結(jié)果保留整數(shù))
【答案】38米
【解析】
作DM⊥AB于M,交CB于F,CG⊥DM于G,根據(jù)矩形的性質(zhì)得到CG=DE=5,DG=EC=1.3,設(shè)FM=x米,根據(jù)正切的定義用x表示出DM、BM,結(jié)合圖形列出方程,解方程得到答案.
解:如圖,作DM⊥AB于M,交CB于F,CG⊥DM于G,則四邊形DECG為矩形,
∴CG=DE=5,DG=EC=1.3,
設(shè)FM=x米,由題意得,∠BDM=40°,∠BFM=∠BCA=45°,
∴∠CFG=45°,BM=FM=x,
∴GF=GC=5,
∴DF=DG+GF=5+1.3=6.3,
在Rt△BDM中,tan∠BDM=,
∴DM=,
由題意得,DM﹣DF=FM,即,
解得,x≈33.2,則BA=BM+AM=38.2≈38(米),
答:該塔AB的高度約為38米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的邊長(zhǎng)為4,E,F分別是AB,AD邊上的動(dòng)點(diǎn),BE=AF,∠BAD=120°,則下列結(jié)論:①△BEC≌△AFC;②△ECF為等邊三角形;③∠AGE=∠AFC;④若AF=1,則. 其中正確結(jié)論的序號(hào)有________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn),過(guò)作軸于點(diǎn).點(diǎn)為反比例函數(shù)圖象上的一動(dòng)點(diǎn),過(guò)點(diǎn)作軸于點(diǎn),連接.直線與軸的負(fù)半軸交于點(diǎn).
(1)求反比例函數(shù)的表達(dá)式;
(2)若,求的面積;
(3)是否存在點(diǎn),使得四邊形為平行四邊形?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與軸、軸分別相交于點(diǎn)B、C,經(jīng)過(guò)B、C兩點(diǎn)的拋物線與軸的另一個(gè)交點(diǎn)為A,頂點(diǎn)為P,且對(duì)稱軸為直線。點(diǎn)G是拋物線位于直線下方的任意一點(diǎn),連接PB、GB、GC、AC .
(1)求該拋物線的解析式;
(2)求△GBC面積的最大值;
(3)連接AC,在軸上是否存在一點(diǎn)Q,使得以點(diǎn)P,B,Q為頂點(diǎn)的三角形與△ABC相似?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:
材料一:對(duì)實(shí)數(shù)a、b,定義的含義為:當(dāng)時(shí),;當(dāng)時(shí),.例如:;.
材料二:關(guān)于數(shù)學(xué)家高斯的故事,200多年前,高斯的算術(shù)老師提出了下面的問(wèn):據(jù)說(shuō),當(dāng)其他同學(xué)忙于把100個(gè)數(shù)逐項(xiàng)相加時(shí),十歲的高斯卻用下面的方法迅速算出了正確答案:.也可以這樣理解:令①,則②,①+②:,即.
根據(jù)以上材料,回答下列問(wèn)題:
(1)已知,且,求的值;
(2)已知,且,化簡(jiǎn):;
(3)對(duì)于正數(shù)m,有,求…+的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等邊△ABC,頂點(diǎn)B(0,0),C(2,0),規(guī)定把△ABC先沿x軸繞著點(diǎn)C順時(shí)針旋轉(zhuǎn),使點(diǎn)A落在x軸上 ,稱為一次變換,再沿x軸繞著點(diǎn)A順時(shí)針旋轉(zhuǎn),使點(diǎn)B落在x軸上 ,稱為二次變換,……經(jīng)過(guò)連續(xù)2017次變換后,頂點(diǎn)A的坐標(biāo)是:
A. (4033, ) B. (4033,0) C. (4036, ) D. (4036,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, AB 是 ⊙ O 的直徑, C 是的中點(diǎn), CE ⊥ AB 于 E , BD 交 CE 于 F .
(1)求證: CF=BF ;
(2)若 CD=6 ,AC=8 ,求 BE 、 CF 的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格圖形中,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn).如圖,5×5正方形方格紙圖中,點(diǎn)A,B都在格點(diǎn)處.
(1)請(qǐng)?jiān)趫D中作等腰△ABC,使其底邊AC=2,且點(diǎn)C為格點(diǎn);
(2)在(1)的條件下,作出平行四邊形ABDC,且D為格點(diǎn),并直接寫(xiě)出平行四邊形ABDC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年,國(guó)家衛(wèi)生健康委員會(huì)和國(guó)家教育部在全國(guó)開(kāi)展了兒童青少年近視調(diào)查工作,調(diào)查數(shù)據(jù)顯示,全國(guó)兒童青少年近視過(guò)半.某校初三學(xué)習(xí)小組為了解本校學(xué)生對(duì)自己視力保護(hù)的重視程度,隨機(jī)在校內(nèi)調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為“非常重視”“重視”“比較重視”“不重視”四類,并將結(jié)果繪制成下面的兩幅不完整的統(tǒng)計(jì)圖:
根據(jù)圖中信息,解答下列問(wèn)題:
(1)求本次調(diào)查的學(xué)生總?cè)藬?shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)該校共有學(xué)生1000人,請(qǐng)你估計(jì)該校對(duì)視力保護(hù)“非常重視”的學(xué)生人數(shù);
(3)對(duì)視力“非常重視”的4人有,兩名男生,,兩名女生,若從中隨機(jī)抽取兩人向全校作視力保護(hù)交流,請(qǐng)利用樹(shù)狀圖或列表的方法,求恰好抽到一男一女的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com