【題目】觀光塔是濰坊市區(qū)的標(biāo)志性建筑,為測(cè)量其高度,如圖,一人先在附近一樓房的底端A點(diǎn)處觀測(cè)觀光塔頂端C處的仰角是60°,然后爬到該樓房頂端B點(diǎn)處觀測(cè)觀光塔底部D處的俯角是30°.已知樓房高AB約是45m,根據(jù)以上觀測(cè)數(shù)據(jù)可求觀光塔的高CD m

【答案】135

【解析】

試題分析:根據(jù)爬到該樓房頂端B點(diǎn)處觀測(cè)觀光塔底部D處的俯角是30°”可以求出AD的長(zhǎng),然后根據(jù)在一樓房的底端A點(diǎn)處觀測(cè)觀光塔頂端C處的仰角是60°”可以求出CD的長(zhǎng).

解:爬到該樓房頂端B點(diǎn)處觀測(cè)觀光塔底部D處的俯角是30°,

∴∠ADB=30°,

RtABD中,

tan30°=,

解得,=,

AD=45,

在一樓房的底端A點(diǎn)處觀測(cè)觀光塔頂端C處的仰角是60°

RtACD中,

CD=ADtan60°=45×=135米.

故答案為135米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AC=BC,AB⊥x軸,垂足為A.反比例函數(shù)y= (x>0)的圖象經(jīng)過(guò)點(diǎn)C,交AB于點(diǎn)D.已知AB=4,BC=.

(1)若OA=4,求k的值;

(2)連接OC,若BD=BC,求OC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探究題

已知:如圖1,.求證:

老師要求學(xué)生在完成這道教材上的題目證明后,嘗試對(duì)圖形進(jìn)行變式,繼續(xù)做拓展探究,看看有什么新發(fā)現(xiàn)?

1)小穎首先完成了對(duì)這道題的證明,在證明過(guò)程中她用到了平行線的一條性質(zhì),小穎用到的平行線性質(zhì)可能是 .

2)接下來(lái),小穎用《幾何畫板》對(duì)圖形進(jìn)行了變式,她先畫了兩條平行線,然后在平行線間畫了一點(diǎn),連接后,用鼠標(biāo)拖動(dòng)點(diǎn),分別得到了圖2,3,4,小穎發(fā)現(xiàn)圖3正是上面題目的原型,于是她由上題的結(jié)論猜想到圖24中的、之間也可能存在著某種數(shù)量關(guān)系.于是她利用《幾何畫板》的度量與計(jì)算功能,找到了這三個(gè)角之間的數(shù)量關(guān)系.

請(qǐng)你在小穎操作探究的基礎(chǔ)上,繼續(xù)完成下面的問(wèn)題:

①猜想圖2、之間的數(shù)量關(guān)系并加以證明;

②補(bǔ)全圖4,直接寫出、之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:在四邊形ABFC中,=90的垂直平分線EFBC于點(diǎn)D,AB于點(diǎn)E,CF=AE

(1)試探究,四邊形BECF是什么特殊的四邊形;

(2)當(dāng)的大小滿足什么條件時(shí),四邊形BECF是正方形?請(qǐng)回答并證明你的結(jié)論.

(特別提醒:表示角最好用數(shù)字)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】周末,身高都為1.6米的小芳、小麗來(lái)到溪江公園,準(zhǔn)備用她們所學(xué)的知識(shí)測(cè)算南塔的高度.如圖,小芳站在A處測(cè)得她看塔頂?shù)难鼋?/span>α45°,小麗站在B處(A、B與塔的軸心共線)測(cè)得她看塔頂?shù)难鼋?/span>β30°.她們又測(cè)出AB兩點(diǎn)的距離為30米.假設(shè)她們的眼睛離頭頂都為10cm,則可計(jì)算出塔高約為(結(jié)果精確到0.01,參考數(shù)據(jù): ≈1.414, ≈1.732)( 。

A. 36.21 B. 37.71 C. 40.98 D. 42.48

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某數(shù)學(xué)興趣小組在活動(dòng)課上測(cè)量學(xué)校旗桿高度.已知小明的眼睛與地面的距離(AB)是1.7 m,看旗桿頂部M的仰角為45°;小紅的眼睛與地面的距離(CD)是1.5 m,看旗桿頂部M的仰角為30°.兩人相距30米且位于旗桿兩側(cè)(點(diǎn)B,N,D在同一條直線上).求旗桿MN的高度.(參考數(shù)據(jù):≈1.414,≈1.732,結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】兩個(gè)反比例函數(shù)和在第一象限內(nèi)的圖象如圖所示點(diǎn)P在的圖象上,軸于點(diǎn)C交的圖象于點(diǎn)軸于點(diǎn)D,交的圖象于點(diǎn)B,當(dāng)點(diǎn)P在的圖象上運(yùn)動(dòng)時(shí),下列結(jié)論錯(cuò)誤的是( 。

A. 的面積相等

B. 當(dāng)點(diǎn)APC的中點(diǎn)時(shí),點(diǎn)B一定是PD的中點(diǎn)

C. 只有當(dāng)四邊形OCPD為正方形時(shí),四邊形PAOB的面積最大

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為了提高綠化品位,美化環(huán)境,準(zhǔn)備將一塊周長(zhǎng)為114 m的長(zhǎng)方形草地,設(shè)計(jì)成長(zhǎng)和寬分別相等的9塊長(zhǎng)方形(如圖所示),種上各種花卉,經(jīng)市場(chǎng)預(yù)測(cè),每平方米綠化費(fèi)為100元.

(1)求出每個(gè)小長(zhǎng)方形的長(zhǎng)和寬;

(2)請(qǐng)計(jì)算出完成這塊草地的綠化工程預(yù)計(jì)投入資金多少元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一塊長(zhǎng)為a(cm),寬為b(cm)(a>b)的矩形黑板的四周,鑲上寬為x(cm)的木板,得到一個(gè)新的矩形.

(1)試用含a,b,x的代數(shù)式表示新矩形的長(zhǎng)和寬;

(2)試判斷原矩形的長(zhǎng)、寬與新矩形的長(zhǎng)、寬是不是比例線段,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案