【題目】某商店需要購進(jìn)甲、乙兩種商品共180件,其進(jìn)價(jià)和售價(jià)如表:(注:獲利=售價(jià)-進(jìn)價(jià))
甲 | 乙 | |
進(jìn)價(jià)(元/件) | 14 | 35 |
售價(jià)(元/件) | 20 | 43 |
(1)若商店計(jì)劃銷售完這批商品后能獲利1240元,問甲、乙兩種商品應(yīng)分別購進(jìn)多少件?
(2)若商店計(jì)劃投入資金少于5040元,且銷售完這批商品后獲利多于1312元,請問有哪幾種購貨方案?并直接寫出其中獲利最大的購貨方案.
【答案】(1)甲種商品購進(jìn)100件,乙種商品購進(jìn)80件;(2)有三種購貨方案,其中獲利最大的是方案一.
【解析】
(1)等量關(guān)系為:甲件數(shù)+乙件數(shù)=180;甲總利潤+乙總利潤=1240.
(2)設(shè)出所需未知數(shù),甲進(jìn)價(jià)×甲數(shù)量+乙進(jìn)價(jià)×乙數(shù)量<5040;甲總利潤+乙總利潤>1312.
(1)設(shè)甲種商品應(yīng)購進(jìn)x件,乙種商品應(yīng)購進(jìn)y件.
根據(jù)題意得:.
解得:.
答:甲種商品購進(jìn)100件,乙種商品購進(jìn)80件.
(2)設(shè)甲種商品購進(jìn)a件,則乙種商品購進(jìn)(180-a)件.
根據(jù)題意得.
解不等式組,得60<a<64.
∵a為非負(fù)整數(shù),∴a取61,62,63
∴180-a相應(yīng)取119,118,117
方案一:甲種商品購進(jìn)61件,乙種商品購進(jìn)119件.
方案二:甲種商品購進(jìn)62件,乙種商品購進(jìn)118件.
方案三:甲種商品購進(jìn)63件,乙種商品購進(jìn)117件.
答:有三種購貨方案,其中獲利最大的是方案一.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠為了解工人在單位時(shí)間內(nèi)加工同一種零件的技能水平,隨機(jī)抽取了50名工人加工的零件進(jìn)行檢測,統(tǒng)計(jì)出他們各自加工的合格品數(shù)是1﹣8這8個(gè)整數(shù),現(xiàn)提供統(tǒng)計(jì)圖的部分信息如圖,請解答下列問題:
(1)根據(jù)統(tǒng)計(jì)圖,求這50名工人加工出的合格品數(shù)的中位數(shù);
(2)寫出這50名工人加工出的合格品數(shù)的眾數(shù)的可能取值;
(3)廠方認(rèn)定,工人在單位時(shí)間內(nèi)加工出的合格品數(shù)不低于3件為技能合格,否則,將接受技能再培訓(xùn).已知該廠有同類工人400名,請估計(jì)該廠將接受技能再培訓(xùn)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OF是∠MON的平分線,點(diǎn)A在射線OM上,P,Q是直線ON上的兩動(dòng)點(diǎn),點(diǎn)Q在點(diǎn)P的右側(cè),且PQ=OA,作線段OQ的垂直平分線,分別交直線OF、ON交于點(diǎn)B、點(diǎn)C,連接AB、PB.
(1)如圖1,當(dāng)P、Q兩點(diǎn)都在射線ON上時(shí),請直接寫出線段AB與PB的數(shù)量關(guān)系;
(2)如圖2,當(dāng)P、Q兩點(diǎn)都在射線ON的反向延長線上時(shí),線段AB,PB是否還存在(1)中的數(shù)量關(guān)系?若存在,請寫出證明過程;若不存在,請說明理由;
(3)如圖3,∠MON=60°,連接AP,設(shè)=k,當(dāng)P和Q兩點(diǎn)都在射線ON上移動(dòng)時(shí),k是否存在最小值?若存在,請直接寫出k的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,,點(diǎn)E在AD上,且,連接EC,將矩形ABCD沿直線BE翻折,點(diǎn)A恰好落在EC上的點(diǎn)A'處,則____________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖①,在矩形ABCD中,AB=5,AD=,AE⊥BD,垂足是E,點(diǎn)F是點(diǎn)E關(guān)于AB的對稱點(diǎn),連接AF、BF
(1)求AE和BE的長;
(2)若將△ABF沿著射線BD方向平移,設(shè)平移的距離為m(平移距離指點(diǎn)B沿BD方向所經(jīng)過的線段長度).當(dāng)點(diǎn)F分別平移到線段AB、AD上時(shí),直接寫出相應(yīng)的m的值;
(3)如圖②,將△ABF繞點(diǎn)B順時(shí)針旋轉(zhuǎn)一個(gè)角α(0°<α<180°),記旋轉(zhuǎn)中的△ABF為△A′BF′,在旋轉(zhuǎn)過程中,設(shè)A′F′所在的直線與直線AD交于點(diǎn)P,與直線BD交于點(diǎn)Q.是否存在這樣的P、Q兩點(diǎn),使△DPQ為等腰三角形?若存在,求出此時(shí)DQ的長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,BC=6,E是BC邊的中點(diǎn),點(diǎn)P在線段AD上,過P作PF⊥AE于F,設(shè)PA=x.
(1)求證:△PFA∽△ABE;
(2)當(dāng)點(diǎn)P在線段AD上運(yùn)動(dòng)時(shí),設(shè)PA=x,是否存在實(shí)數(shù)x,使得以點(diǎn)P,F,E為頂點(diǎn)的三角形也與△ABE相似?若存在,請求出x的值;若不存在,請說明理由;
(3)探究:當(dāng)以D為圓心,DP為半徑的⊙D與線段AE只有一個(gè)公共點(diǎn)時(shí),請直接寫出x滿足的條件: .
備用圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,三角形紙片ABC,AB=AC,∠BAC=90°,點(diǎn)E為AB中點(diǎn).沿過點(diǎn)E的直線折疊,使點(diǎn)B與點(diǎn)A重合,折痕現(xiàn)交于點(diǎn)F.已知EF=cm, 則BC的長是_______________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD,∠B=90°,AB=AD,∠BAD的平分線交BC于E,連接DE.
(1)說明點(diǎn)D在△ABE的外接圓上;
(2)若∠AED=∠CED,試判斷直線CD與△ABE外接圓的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交
于點(diǎn)A(1,4)、點(diǎn)B(-4,n).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△OAB的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com