【題目】如圖,AB⊙O的直徑,點CD⊙O上,∠A=2∠BCD,點EAB的延長線上,∠AED=∠ABC

1)求證:DE⊙O相切;

2)若BF=2,DF=,求⊙O的半徑.

【答案】(1)詳見解析;(25.

【解析】試題分析:(1)連接OD,由AB⊙O的直徑可得∠ACB=90°,所以∠A+∠ABC=90°,即可證得∠BOD=∠A,從而推出∠ODE=90°,即可得到結(jié)論;(2)連接BD,過DDH⊥BFH,由弦切角定理得到∠BDE=∠BCD,推出△ACF△FDB都是等腰三角形,根據(jù)等腰直角三角形的性質(zhì)得到FH=BH=BF=1,則FH=1,根據(jù)勾股定理得到HD=3,然后根據(jù)勾股定理列方程即可得到結(jié)論.

試題解析:(1)證明:連接OD,

∵AB⊙O的直徑,

∴∠ACB=90°,

∴∠A+∠ABC=90°

∵∠BOD=2∠BCD,∠A=2∠BCD,

∴∠BOD=∠A,

∵∠AED=∠ABC

∴∠BOD+∠AED=90°,

∴∠ODE=90°

OD⊥DE,

∴DE⊙O相切;

2)解:連接BD,過DDH⊥BFH,

∵DE⊙O相切,

∴∠BDE=∠BCD,

∵∠AED=∠ABC,

∴∠AFC=∠DBF,

∵∠AFC=∠DFB,

∴△ACF△FDB都是等腰三角形,

∴FH=BH=BF=1,則FH=1,由勾股定理可得HD==3

Rt△ODH中,OH2+DH2=OD2

即(OD﹣12+32=OD2,

∴OD=5,

∴⊙O的半徑是5

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】若正多邊形的一個外角為60,則這個正多邊形的中心角的度數(shù)是( )

A. 30° B. 60° C. 90° D. 120°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形ABCD沿GH對折,點C落在Q處,點D落在AB邊上E處,EQBC相交于F,若AD8 cm,AB6 cm,AE4cm,則EBF的周長是______________ cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中.有拋物線.拋物線經(jīng)過原點,與x軸正半軸交于點A,與其對稱軸交于點B.P是拋物線上一點,且在x軸上方.過點P作x軸的垂線交拋物線于點Q.過點Q作PQ的垂線交拋物線于點(不與點Q重合),連結(jié).設點P的橫坐標為m.

(1)求a的值;

(2)當拋物線經(jīng)過原點時,設△與△OAB重疊部分圖形的周長為l.

①求的值;

②求l與m之間的函數(shù)關(guān)系式;

(3)當h為何值時,存在點P,使以點O、A、Q、為頂點的四邊形是軸對稱圖形?直接寫出h的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】a,b,c是同一平面內(nèi)任意三條直線,交點可能有(  )

A. 1個或2個或3 B. 0個或1個或2個或3

C. 1個或2 D. 都不對

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料:

小明遇到這樣一個問題:如圖1,△ABC中,AB=AC,點D在BC邊上,∠DAB=∠ABD,BE⊥AD,垂足為E,求證:BC=2AE.

小明經(jīng)探究發(fā)現(xiàn),過點A作AF⊥BC,垂足為F,得到∠AFB=∠BEA,從而可證△ABF≌△BAE(如圖2),使問題得到解決.

(1)根據(jù)閱讀材料回答:△ABF與△BAE全等的條件是 AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一個)

參考小明思考問題的方法,解答下列問題:

(2)如圖3,△ABC中,AB=AC,∠BAC=90°,D為BC的中點,E為DC的中點,點F在AC的延長線上,且∠CDF=∠EAC,若CF=2,求AB的長;

(3)如圖4,△ABC中,AB=AC,∠BAC=120°,點D、E分別在AB、AC邊上,且AD=kDB(其中0<k<),∠AED=∠BCD,求的值(用含k的式子表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個三角形的三條中位線的長為6、78,則此三角形的周長為( 。

A. 40B. 41C. 42D. 43

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明的體重為48.86kg,48.86≈_____.(精確到0.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知小明與小亮兩人在同一地點,若小明向北直走160 m,再向東直走80 m,可到購物中心,則小亮向西直走____m后,他與購物中心的距離為340 m.

查看答案和解析>>

同步練習冊答案