【題目】如圖所示,點P在矩形ABCD的對角線AC上,且不與點A,C重合,過點P分別作邊AB,AD的平行線,交兩組對邊于點E,F(xiàn)和點G,H.

(1)求證:△PHC≌△CFP;

(2)證明四邊形 PEDH和四邊形 PGBF都是矩形,并直接寫出它們面積之間的關(guān)系。

【答案】(1)證明見解析;(2)證明見解析,面積相等.

【解析】試題分析:(1)由矩形的性質(zhì)得出對邊平行,再根據(jù)平行線的性質(zhì)得出相等的角,結(jié)合全等三角形的判定定理AAS即可得出△PHC≌△CFP;

2)由矩形的性質(zhì)找出∠D=∠B=90°,再結(jié)合對邊互相平行即可證出四邊形PEDH和四邊形PFBG都是矩形,通過角的正切值,在直角三角形中表示出直角邊的關(guān)系,利用矩形的面積公式即可得出兩矩形面積相等.

試題解析:(1四邊形ABCD為矩形,∴AB∥CDAD∥BC

∵PF∥AB∴PF∥CD,∴∠CPF=∠PCH

∵PH∥AD∴PH∥BC,∴∠PCF=∠CPH

△PHC△CFP中,∵∠CPF=∠PCH,PC=CP∠PCF=∠CPH,∴△PHC≌△CFPASA).

2四邊形ABCD為矩形,∴∠D=∠B=90°

∵EF∥AB∥CD,GH∥AD∥BC四邊形PEDH和四邊形PFBG都是矩形.

∵EF∥AB,∴∠CPF=∠CAB

Rt△AGP中,∠AGP=90°PG=AGtan∠CAB

Rt△CFP中,∠CFP=90°,CF=PFtan∠CPF

S矩形DEPH=DEEP=CFEP=PFEPtan∠CPF;

S矩形PGBF=PGPF=AGPFtan∠CAB=EPPFtan∠CAB

∵tan∠CPF=tan∠CAB,∴S矩形DEPH=S矩形PGBF

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為弘揚中華傳統(tǒng)文化,黔南州近期舉辦了中小學(xué)生國學(xué)經(jīng)典大賽.比賽項目為:A.唐詩;B.宋詞;C.論語;D.三字經(jīng).比賽形式分單人組雙人組”.

(1)小麗參加單人組,她從中隨機(jī)抽取一個比賽項目,恰好抽中三字經(jīng)的概率是多少?

(2)小紅和小明組成一個小組參加雙人組比賽,比賽規(guī)則是:同一小組的兩名隊員的比賽項目不能相同,且每人只能隨機(jī)抽取一次,則恰好小紅抽中唐詩且小明抽中宋詞的概率是多少?請用畫樹狀圖或列表的方法進(jìn)行說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(

A. 頂點在圓上的角是圓周角 B. 兩邊都和圓相交的角是圓周角

C. 圓心角是圓周角的2 D. 圓周角度數(shù)等于它所對圓心角度數(shù)的一半

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a﹣5和﹣7互為相反數(shù),求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=(x+2)2+m的圖象與y軸交于點C,點B在拋物線上,且與點C關(guān)于拋物線的對稱軸對稱,已知一次函數(shù)y=kx+b的圖象經(jīng)過該二次函數(shù)圖象上的點A(﹣1,0)及點B.

(1)求二次函數(shù)與一次函數(shù)的解析式;

(2)根據(jù)圖象,直接寫出滿足(x+2)2+m≥kx+b的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電冰箱廠4月份的產(chǎn)量為1000臺,由于市場需求量不斷增大,6月份的產(chǎn)量提高到1210臺,則該廠電冰箱產(chǎn)量從4月份到6月份的月平均增長率為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圓周角是24度,那么它所對的弧是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小張從A地騎車(保持勻速)去B地,7:30分出發(fā),10:30分到達(dá)。小李開車從A地出發(fā)去B地,速度是小張的5倍,追上小張后,速度降低為小張的4倍。小李9:00點鐘到達(dá)B地。求小李的出發(fā)時間。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ax=3,ay=9,則a2x+y_____

查看答案和解析>>

同步練習(xí)冊答案