【題目】如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,拋物線y=a(x﹣)(x+)與x軸交于A、B兩點,與y軸交于點C,直線DE是拋物線的對稱軸,點D在x軸上,點E在拋物線上,直線y=kx+過點A、C.
(1)求拋物線的解析式;
(2)點P是第二象限對稱軸左側(cè)拋物線上一點,過點P作PQ∥AC交對稱軸于點Q,設(shè)點P的橫坐標(biāo)為t,線段QD的長為d,求d與t的函數(shù)解析式(不要求寫出自變量t的取值范圍);
(3)在(2)的條件下,直線AC與對稱軸交于點F,點M在對稱軸ED上,連接AM、AE,∠AMD=2∠EAM,過點A作AG⊥AM交過點D平行于AE的直線于點G,點N是線段BP延長線上一點,連接AN、MN、NF,若四邊形NMGA與四邊形NFDA的面積相等,且FN∥AM,求點P的坐標(biāo).
【答案】(1)y=﹣x2﹣x+;(2)d=﹣t2﹣t+5;(3)P(﹣5,).
【解析】
(1)由已知可求C(0,),再將點C代入拋物線解析式即可求出a的值,即可得到二次函數(shù)的解析式;
(2)P(t,﹣t2﹣t+),過點P作PT⊥x軸,PS⊥y軸交DE于點L,則PT=﹣t2﹣t+,PS=﹣t,在矩形PTOS和矩形PTDL中,有DT=PL=﹣t﹣,設(shè)AC交DE于點F,由∠PQL=∠AFL=∠ACO,則tan∠PQL=tan∠AFL=tan∠ACO=,QL=﹣t﹣,即可得到d=﹣t2﹣t+5;
(3)先證明△AMG≌△DFA,得到△AMN與△ANF的面積相等,過點M作MK⊥AN于點K,過點F作FH⊥AN于點H,再證明四邊形HKMF為平行四邊形,四邊形AMFN為平行四邊形,求出BN的解析式為y=﹣x+,即可求P點坐標(biāo).
(1)∵直線y=kx+與y軸交于點C,
∴C(0,),
∴OC=,
∵y=a(x﹣)(x+)經(jīng)過點C,
∴a=﹣,
∴y=﹣x2﹣x+;
(2)∵y=﹣x2﹣x+,
∴設(shè)P(t,﹣t2﹣t+),A(﹣,0),B(,0),
∴tan∠ACO==,
過點P作PT⊥x軸,PS⊥y軸交DE于點L,
∴PT=﹣t2﹣t+,PS=﹣t,
∵DE是拋物線的對稱軸,
∴D(﹣,0),
在矩形PTOS和矩形PTDL中,有DT=PL=﹣t﹣,
設(shè)AC交DE于點F,
∵PQ∥AC,DE∥y軸,
∴∠PQL=∠AFL=∠ACO,
∴tan∠PQL=tan∠AFL=tan∠ACO=,
∴QL=﹣t﹣,
∵DQ=DL+QL,
∴d=﹣t2﹣t+5;
(3)∠EAM=α,則∠AMD=2∠EAM=2α,
∴∠AEM=∠EAM=α,
∴AM=EM,
∵DE=8,AD=4,
∴在RtADM中,AM2=(8-AM)2+42,
∴AM=EM=5,DM=3,
∵DG∥AE,
∴∠GDJ=∠AEM=α,
∴∠ADG=90°﹣α,
∵AM⊥AG,
∴∠MAG=90°,
∴∠DAG+∠MAD=∠AMD+∠MAD,
∴∠DAG=∠AMD=2α,
∴∠AGD=∠ADG=90°﹣α,
∴AG=AD=4,
∵tan∠AFD=,
∴DF=5,
在△AMG與△DFA中,
,
∴△AMG≌△DFA(SAS),
∴△AMG與△DAF的面積相等,
∵四邊形NMGA與四邊形NFDA的面積相等,
∴△AMN與△ANF的面積相等,
如圖2,過點M作MK⊥AN于點K,過點F作FH⊥AN于點H,
∴MK=FH,
∵MK∥FH,
∴四邊形HKMF為平行四邊形,
∴AN∥DE,
∴點N與點A的橫坐標(biāo)相等,
∵AM∥NF,
∴四邊形AMFN為平行四邊形,
∴AN=MF=DF﹣DM=2,
∴N(﹣,2),
∴BN的解析式為:y=﹣x+,
∴﹣x+=﹣x2﹣x+,
∴x=﹣5或x=(舍),
∴P(﹣5,).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從甲地到乙地有A,B,C三條不同的公交線路.為了解早高峰期間這三條線路上的公交車從甲地到乙地的用時情況,在每條線路上隨機選取了500個班次的公交車,收集了這些班次的公交車用時(單位:分鐘)的數(shù)據(jù),統(tǒng)計如下:
公交車用時 公交車用時的頻數(shù) 線路 | 合計 | ||||
A | 59 | 151 | 166 | 124 | 500 |
B | 50 | 50 | 122 | 278 | 500 |
C | 45 | 265 | 167 | 23 | 500 |
早高峰期間,乘坐_________(填“A”,“B”或“C”)線路上的公交車,從甲地到乙地“用時不超過45分鐘”的可能性最大.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“疾馳臭豆腐”是長沙知名地方小吃,某分店經(jīng)理發(fā)現(xiàn),當(dāng)每份臭豆腐的售價為元時,每天能賣出份;當(dāng)每份臭豆腐的售價每增加元時,每天就會少賣出份,設(shè)每份臭豆腐的售價增加元時,一天的營業(yè)額為元.
(1)求與的函數(shù)關(guān)系式(不要求寫出的取值范圍);
(2)考慮到顧客可接受價格元份的范圍是,且為整數(shù),不考慮其他因素,則該分店的臭豆腐每份多少元時,每天的臭豆腐營業(yè)額最大?最大營業(yè)額是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】嘉善縣將開展以“珍愛生命,鐵拳護(hù)航”為主題的交通知識競賽,某校對參加選拔賽的若干名同學(xué)的成績按A,B,C,D四個等級進(jìn)行統(tǒng)計,繪制成如下不完整的頻數(shù)統(tǒng)計表和扇形統(tǒng)計圖
成績等級 | 頻數(shù)(人數(shù)) | 頻率 |
A | 4 | 0.08 |
B | m | 0.52 |
C | n | |
D | ||
合計 | 1 |
(1)求m= ,n= ;
(2)在扇形統(tǒng)計圖中,求“C等級”所對應(yīng)圓心角的度數(shù);
(3)“A等級”的4名同學(xué)中有3名男生和1名女生,現(xiàn)從中隨機挑選2名同學(xué)代表學(xué)校參加全縣比賽,請用樹狀圖法或列表法求出恰好選中“一男一女”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲車與乙車同時從A地出發(fā)去往B地,如圖所示,折線O﹣A﹣B﹣C和射線OC分別是甲、乙兩車行進(jìn)過程中路程與時間的關(guān)系,已知甲車中途有事停留36分鐘后再繼續(xù)前往C地,兩車同時到達(dá)C地,則下列說法:①乙車的速度為70千米/時;②甲車再次出發(fā)后的速度為100千米/時;③兩車在到達(dá)B地前不會相遇;④甲車再次出發(fā)時,兩車相距60千米.其中正確的有( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,A(﹣3,2),B(0,1),將線段AB沿x軸的正方向平移n(n>0)個單位,得到線段A′,B′恰好都落在反比例函數(shù)y(m≠0)的圖象上.
(1)用含n的代數(shù)式表示點A′,B′的坐標(biāo);
(2)求n的值和反比例函數(shù)y(m≠0)的表達(dá)式;
(3)點C為反比例函數(shù)y(m≠0)圖象上的一個動點,直線CA′與x軸交于點D,若CD=2A′D,請直接寫出點C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:AB為⊙O的直徑,C、D為心⊙O上的點,C是優(yōu)弧AD的中點,CE⊥DB交DB的延長線于點E.
(1)如圖1,判斷直線CE與⊙O的位置關(guān)系,并說明理由.
(2)如圖2,若tan∠BCE=,連BC、CD,求cos∠BCD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,點為線段外一動點,且,,填空:當(dāng)點位于__________時,線段的長取到最大值__________,且最大值為;(用含、的式子表示).
(2)如圖2,若點為線段外一動點,且,,分別以,為邊,作等邊和等邊,連接,.
①圖中與線段相等的線段是線段__________,并說明理由;
②直接寫出線段長的最大值為__________.
(3)如圖3,在平面直角坐標(biāo)系中,點的坐標(biāo)為,點的坐標(biāo)為,點為線段外一動點,且,,,請直接寫出線段長的最大值為__________,及此時點的坐標(biāo)為__________.(提示:等腰直角三角形的三邊長、、滿足)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線L:y=x+1交y軸于點A1,在x軸正方向上取點B1,使OB1=OA1;過點B1作A2B1⊥x軸,交L于點A2,在x軸正方向上取點B2,使B1B2=B1A2;過點B2作A3B2⊥x軸,交L于點A3,在x軸正方向上取點B3,使B2B3=B2A3;…記△OA1B1面積為S1,△B1A2B2面積為S2,△B2A3B3面積為S3,…則S2019等于_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com