【題目】如圖,CD是⊙O的直徑,AB是⊙O的弦,ABCD,垂足為G,OGOC=35,AB=8.點(diǎn)E為圓上一點(diǎn),∠ECD=15°,將 沿弦CE翻折,交CD于點(diǎn)F,圖中陰影部分的面積=_________

【答案】

【解析】

連接AO,將陰影部分沿CE翻折,點(diǎn)F的對(duì)應(yīng)點(diǎn)為M,連接OM,過(guò)點(diǎn)MMNCD于點(diǎn)N,根據(jù)題意可以利用勾股定理求得⊙O的半徑;得出S陰影S弓形CBM,然后利用銳角三角函數(shù)、扇形的面積和三角形的面積即可解答本題.

解:連接AO,將陰影部分沿CE翻折,點(diǎn)F的對(duì)應(yīng)點(diǎn)為M,如圖所示,
CD為⊙O的直徑,ABCDAB8,
AGAB4,
OGOC35,ABCD,垂足為G,
∴設(shè)⊙O的半徑為5k,則OG3k,
∴(3k242=(5k2,
解得,k1k1(舍去),
5k5,
∴⊙O的半徑是5;

將陰影部分沿CE翻折,點(diǎn)F的對(duì)應(yīng)點(diǎn)為M,
∵∠ECD15°,由對(duì)稱(chēng)性可知,∠DCM30°,S陰影S弓形CBM,
連接OM,則∠MOD60°,
∴∠MOC120°,
過(guò)點(diǎn)MMNCD于點(diǎn)N
MNMOsin60°=,
S陰影S扇形OMCSOMC,
即圖中陰影部分的面積是:
故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知二次函數(shù)(為常數(shù),)的圖象過(guò)點(diǎn)和點(diǎn),函數(shù)圖象最低點(diǎn)的縱坐標(biāo)為.直線的解析式為

求二次函數(shù)的解析式;

直線沿軸向右平移,得直線,與線段相交于點(diǎn),與軸下方的拋物線相交于點(diǎn),過(guò)點(diǎn)軸于點(diǎn),把沿直線折疊,當(dāng)點(diǎn)恰好落在拋物線上點(diǎn)時(shí)(求直線的解析式;

的條件下,軸交于點(diǎn),把繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,P上的動(dòng)點(diǎn),當(dāng)為等腰三角形時(shí),求符合條件的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了傳承中華民族優(yōu)秀傳統(tǒng)文化,我市某中學(xué)舉行“漢字聽(tīng)寫(xiě)”比賽,賽后整理參賽學(xué)生的成績(jī),將學(xué)生的成績(jī)分為A,BC,D四個(gè)等級(jí),并將結(jié)果繪制成圖1的條形統(tǒng)計(jì)圖和圖2扇形統(tǒng)計(jì)圖,但均不完整.請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問(wèn)題:

1)求參加比賽的學(xué)生共有多少名?并補(bǔ)全圖1的條形統(tǒng)計(jì)圖.

2)在圖2扇形統(tǒng)計(jì)圖中,m的值為_____,表示“D等級(jí)”的扇形的圓心角為_____度;

3)組委會(huì)決定從本次比賽獲得A等級(jí)的學(xué)生中,選出2名去參加全市中學(xué)生“漢字聽(tīng)寫(xiě)”大賽.已知A等級(jí)學(xué)生中男生有1名,請(qǐng)用列表法或畫(huà)樹(shù)狀圖法求出所選2名學(xué)生恰好是一名男生和一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,,,以點(diǎn)為圓心,以為半徑作優(yōu)弧,交于點(diǎn),交于點(diǎn).點(diǎn)在優(yōu)弧上從點(diǎn)開(kāi)始移動(dòng),到達(dá)點(diǎn)時(shí)停止,連接.

1)當(dāng)時(shí),判斷與優(yōu)弧的位置關(guān)系,并加以證明;

2)當(dāng)時(shí),求點(diǎn)在優(yōu)弧上移動(dòng)的路線長(zhǎng)及線段的長(zhǎng).

3)連接,設(shè)的面積為,直接寫(xiě)出的取值范圍.

備用圖

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,正方形ABCD的頂點(diǎn)B,Cx軸的正半軸上,反比例函數(shù)在第一象限的圖象經(jīng)過(guò)頂點(diǎn)A(mm+3)和CD上的點(diǎn)E,且OB-CE=1。直線l過(guò)O、E兩點(diǎn),則tanEOC的值為( )

A. B. 5 C. D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A,B,與y軸交于點(diǎn)C,直線y=x+4經(jīng)過(guò)A,C兩點(diǎn).

(1)求拋物線的解析式;

(2)在AC上方的拋物線上有一動(dòng)點(diǎn)P.

①如圖1,當(dāng)點(diǎn)P運(yùn)動(dòng)到某位置時(shí),以AP,AO為鄰邊的平行四邊形第四個(gè)頂點(diǎn)恰好也在拋物線上,求出此時(shí)點(diǎn)P的坐標(biāo);

②如圖2,過(guò)點(diǎn)O,P的直線y=kx交AC于點(diǎn)E,若PE:OE=3:8,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+ca≠0)的對(duì)稱(chēng)軸為直線x=-1,且拋物線經(jīng)過(guò)A1,0),C03)兩點(diǎn),與x軸交于點(diǎn)B

1)若直線y=mx+n經(jīng)過(guò)B、C兩點(diǎn),求直線BC和拋物線的解析式;

2)在拋物線的對(duì)稱(chēng)軸x=-1上找一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,求出點(diǎn)M的坐標(biāo);

3)設(shè)點(diǎn)P為拋物線的對(duì)稱(chēng)軸x=-1上的一個(gè)動(dòng)點(diǎn),求使△BPC為直角三角形的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知函數(shù)的圖象與函數(shù)的圖象交于兩點(diǎn),連接并延長(zhǎng)交函數(shù)的圖象于點(diǎn),連接,若的面積為12,則的值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,二次函數(shù)ykx12+2的圖象與一次函數(shù)ykxk+2的圖象交于A、B兩點(diǎn),點(diǎn)B在點(diǎn)A的右側(cè),直線AB分別與xy軸交于C、D兩點(diǎn),其中k0

1)求A、B兩點(diǎn)的橫坐標(biāo);

2)若△OAB是以OA為腰的等腰三角形,求k的值;

3)二次函數(shù)圖象的對(duì)稱(chēng)軸與x軸交于點(diǎn)E,是否存在實(shí)數(shù)k,使得∠ODC2BEC,若存在,求出k的值;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案