【題目】已知:如圖,△ABC中,AB=AC,DBC上一點(diǎn),點(diǎn)E、F分別在AB、AC上,BD=CF,CD=BE,GEF的中點(diǎn).

求證:(1)△BDE≌△CFD2DGEF

【答案】1)見詳解;(2)見詳解.

【解析】

1)由在△ABC中,AB=AC,可知∠B=C,又知三角形兩邊相等,故由SAS判定△BDE≌△CFD,

2)由(1)問兩三角形全等,可證DE=DF,又知GEF的中點(diǎn),故能證DGEF

解:(1)在△ABC中,AB=AC,

∴∠B=C

BD=CF,CD=BE,

∴△BDE≌△CFD;

2)由(1)知△BDE≌△CFD,

DE=DF,即△DEF是等腰三角形,

GEF的中點(diǎn),

由等腰三角形三線合一定理,則

DGEF

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電視臺走基層欄目的一位記者乘汽車赴360km外的農(nóng)村采訪,全程的前一部分為高速公路,后一部分為鄉(xiāng)村公路.若汽車在高速公路和鄉(xiāng)村公路上分別以某一速度勻速行駛,汽車行駛的路程y(單位:km)與時間x(單位:h)之間的關(guān)系如圖所示,則下列結(jié)論正確的是

A)汽車在高速公路上的行駛速度為100km/h

B)鄉(xiāng)村公路總長為90km

C)汽車在鄉(xiāng)村公路上的行駛速度為60km/h

D)該記者在出發(fā)后4.5h到達(dá)采訪地

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在研究相似問題時,甲、乙同學(xué)的觀點(diǎn)如下:

甲:將邊長為34、5的三角形按圖1的方式向外擴(kuò)張,得到新三角形,它們的對應(yīng)邊間距為1,則新三角形與原三角形相似.

乙:將鄰邊為35的矩形按圖2的方式向外擴(kuò)張,得到新的矩形,它們的對應(yīng)邊間距均為1,則新矩形與原矩形不相似.

對于兩人的觀點(diǎn),下列說法正確的是( )

A. 兩人都對 B. 兩人都不對 C. 甲對,乙不對 D. 甲不對,乙對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組.請結(jié)合題意填空,完成本題的解答:

(1)解不等式①,得:________;

(2)解不等式②,得:________;

(3)把不等式①和②的解集在數(shù)軸上表示出來:

(4)原不等式組的解集為:________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在△ABC中,∠ACB=90°AC=BC,AEBC的中線,過點(diǎn)CCFAEF,過BBDCBCF的延長線于點(diǎn)D.

1)求證.AE=CD;

2)若BD=5㎝,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC 中,AB=AC,C=70°,AB′C′ABC 關(guān)于直線 EF對稱,∠CAF=10°,連接 BB′,則∠ABB′的度數(shù)是(

A. 30° B. 35° C. 40° D. 45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲、乙兩個幾何體是由一些棱長是1的正方體粘連在一起所構(gòu)成的,這兩個幾何體從上面看到的形狀圖相同是“”請回答下列問題:

1)請分別寫出粘連甲、乙兩個幾何體的正方體的個數(shù).

2)甲、乙兩個幾何體從正面、左面、上面三個方向所看到的形狀圖中哪個不相同?請畫出這個不同的形狀圖.

3)請分別求出甲、乙兩個幾何體的表面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ADABC的角平分線,DE,DF分別是ABDACD的高,得到下面四個結(jié)論:①OA=OD;ADEF;③當(dāng)∠BAC=90°時,四邊形AEDF是正方形;④AE2+DF2=AF2+DE2.其中正確的是( 。

A. ②③ B. ②④ C. ②③④ D. ①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面的證明.

已知,如圖所示,BCE,AFE是直線,

AB∥CD,∠1=∠2,∠3=∠4

求證:AD∥BE

證明:∵ AB∥CD (已知)

∴ ∠4 =∠ ( )

∵ ∠3 =∠4 (已知)

∴ ∠3 =∠ ( )

∵∠1 =∠2 (已知)

∴∠1+∠CAF =∠2+ ∠CAF ( )

即: =∠

∴ ∠3 =∠ ( )

∴ AD∥BE ( )

查看答案和解析>>

同步練習(xí)冊答案