【題目】如圖,在矩形ABCD中,AB4BC6,點(diǎn)MBC的中點(diǎn).

1)在AM上求作一點(diǎn)E,使ADE∽△MAB(尺規(guī)作圖,不寫作法);

2)在(1)的條件下,求AE的長(zhǎng).

【答案】1)過D DEAME,△ADE即為所求;見解析;(2AE

【解析】

1)根據(jù)題意作出圖形即可;

2)先根據(jù)矩形的性質(zhì),得到ADBC,則∠DAE=∠AMB,又由∠DEA=∠B,根據(jù)有兩角對(duì)應(yīng)相等的兩三角形相似,即可證明出△DAE∽△AMB,根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求出DE的長(zhǎng),根據(jù)勾股定理即可得到結(jié)論.

解:(1)過D DEAME,ADE即為所求;

2四邊形ABCD是矩形,

ADBC,

∴∠DAEAMB,

∵∠DEAB90°,

∴△DAE∽△AMB,

DEADABAM,

M是邊BC的中點(diǎn),BC6,

BM3

AB4B90°,

AM5

DE645,

DE,

AE

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC中,∠C90°

1)請(qǐng)你用沒有刻度的直尺和圓規(guī),在線段AB上找一點(diǎn)F,使得點(diǎn)F到邊AC的距離等于FB.(注:不寫作法,保留作圖痕跡,對(duì)圖中涉及到的點(diǎn)的用字母進(jìn)行標(biāo)注)

2)在(1)的情況下,若BC5,AC12,則AF   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑為5的⊙Oy軸相交于A點(diǎn),B為⊙Ox軸上方的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A重合),Cy軸上一點(diǎn)且∠OCB60°,IBCO的內(nèi)心,則AIO的外接圓的半徑的取值(或取值范圍)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O為原點(diǎn),O的半徑為1,點(diǎn)A的坐標(biāo)為(2,0),動(dòng)點(diǎn)BO上,以AB為邊作等邊△ABC(順時(shí)針),則線段OC的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC為矩形,OA=3,OC=4,P為直線AB上一動(dòng)點(diǎn),將直線OP繞點(diǎn)P逆時(shí)針方向旋轉(zhuǎn)90交直線BC于點(diǎn)Q.

(1)當(dāng)點(diǎn)P在線段AB上運(yùn)動(dòng)(不與A,B重合)時(shí),求證:OABQ=APBP;

(2)(1)成立的條件下,設(shè)點(diǎn)P的橫坐標(biāo)為m,線段CQ的長(zhǎng)度為,求出關(guān)于m的函數(shù)解析式,并判斷是否存在最小值?若存在,請(qǐng)求出最小值;若不存在,請(qǐng)說明理由;

(3)直線AB上是否存在點(diǎn)P,使POQ為等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,點(diǎn)C在優(yōu)弧上,將沿BC折疊后剛好經(jīng)過AB的中點(diǎn)D,連接AC,CD.則下列結(jié)論中錯(cuò)誤的是( 。

ACCD;②ADBD;③+;④CD平分∠ACB

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,E、F、GH分別是邊AB、BC、CD、DA的中點(diǎn),則下列說法正確的是( )

A.若四邊形EFGH是平行四邊形,則ACBD相等

B.若四邊形EFGH是正方形,則ACBD互相垂直且相等

C.ACBD,則四邊形EFGH是矩形

D.ACBD,則四邊形EFGH是菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ABC中,∠ABC=45°,BC=7cm,AB=cm點(diǎn)P從點(diǎn)B出發(fā)沿BC方向向點(diǎn)C運(yùn)動(dòng),當(dāng)點(diǎn)P到點(diǎn)C時(shí),停止運(yùn)動(dòng)

1)如圖2,過點(diǎn)PPQBCPQAB于點(diǎn)Q,以PQ為一邊向右側(cè)作矩形PQRS,若點(diǎn)R恰好在邊AC上,且滿足QR=2PQ.BP得值.

(2)以點(diǎn)P為圓心,BP為半徑作圓.

①如圖3,當(dāng)⊙P與邊AC相切于點(diǎn)E時(shí),求BP的值;

②隨著BP的變化,⊙P與△ABC三邊的公共點(diǎn)的個(gè)數(shù)也在變化,請(qǐng)直接寫出公共點(diǎn)個(gè)數(shù)與對(duì)應(yīng)的BP的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知拋物線y=﹣x+3x軸交于AB兩點(diǎn),(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C

1)求出直線BC的解析式.

2M為線段BC上方拋物線上一動(dòng)點(diǎn),過Mx軸的垂線交BCH,過MMQBCQ,求出△MHQ周長(zhǎng)最大值并求出此時(shí)M的坐標(biāo);當(dāng)△MHQ的周長(zhǎng)最大時(shí)在對(duì)稱軸上找一點(diǎn)R,使|ARMR|最大,求出此時(shí)R的坐標(biāo).

3T為線段BC上一動(dòng)點(diǎn),將△OCT沿邊OT翻折得到△OCT,是否存在點(diǎn)T使△OCT與△OBC的重疊部分為直角三角形,若存在請(qǐng)求出BT的長(zhǎng),若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案