【題目】如圖,矩形ABCD中,E是AD的中點(diǎn),延長(zhǎng)CE、BA交于點(diǎn)F,連接AC、DF.
(1)求證:四邊形ACDF是平行四邊形;
(2)當(dāng)CF平分∠BCD,且BC=6時(shí),求CD的長(zhǎng).
【答案】(1)詳見解析;(2)3
【解析】
(1)因?yàn)?/span>BFCD,已經(jīng)有一組對(duì)邊平行我們想到可以運(yùn)用一組對(duì)邊平行且相等這個(gè)判定定理來(lái)證明,所以只需要證明AF=CD就可以通過(guò)證明四邊形AFDC是平行四邊形.
(2)因?yàn)?/span>AE=ED, ,且CF平分,所以是等腰三角形,即ED=DC
證明:(1)∵四邊形ABCD是矩形,
∴AB∥CD,AD=BC,
∴∠FAE=∠CDE.
∵E是AD的中點(diǎn),
∴AE=DE.
在△FAE和△CDE中,,
∴△FAE≌△CDE(AAS),
∴CD=FA.
又∵CD∥AF,
∴四邊形ACDF是平行四邊形;
(2)解:∵CF平分∠BCD,
∴∠DCE=45°.
∵∠CDE=90°,
∴△CDE是等腰直角三角形,
∴CD=DE.
∵E是AD的中點(diǎn),
∴CD=AD=BC=3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AE∥BF,AC、BD分別是∠BAD、∠ABC的平分線,且AC交BF于點(diǎn)C,BD交AE于點(diǎn)D,連接CD.求證:四邊形ABCD是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,OD垂直于弦AC于點(diǎn)E,且交⊙O于點(diǎn)D,F(xiàn)是BA延長(zhǎng)線上一點(diǎn),若∠CDB=∠BFD.
(1)求證:FD是⊙O的一條切線;
(2)若AB=10,AC=8,求DF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)P是正方形ABCD邊AB上一點(diǎn)(不與A、B重合),連接PD并將線段PD繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°,得線段PE,連接BE,則∠CBE等于( )
A. 75°B. 60°C. 30°D. 45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】袋中裝有大小相同的2個(gè)紅球和2個(gè)綠球.
(1)先從袋中摸出1個(gè)球后放回,混合均勻后再摸出1個(gè)球.
①求第一次摸到綠球,第二次摸到紅球的概率;
②求兩次摸到的球中有1個(gè)綠球和1個(gè)紅球的概率;
(2)先從袋中摸出1個(gè)球后不放回,再摸出1個(gè)球,則兩次摸到的球中有1個(gè)綠球和1個(gè)紅球的概率是多少?請(qǐng)直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中學(xué)生騎電動(dòng)車上學(xué)給交通安全帶來(lái)隱患,為了解某中學(xué)2 500個(gè)學(xué)生家長(zhǎng)對(duì)“中學(xué)生騎電動(dòng)車上學(xué)”的態(tài)度,從中隨機(jī)調(diào)查400個(gè)家長(zhǎng),結(jié)果有360個(gè)家長(zhǎng)持反對(duì)態(tài)度,則下列說(shuō)法正確的是( )
A. 調(diào)查方式是普查 B. 該校只有360個(gè)家長(zhǎng)持反對(duì)態(tài)度
C. 樣本是360個(gè)家長(zhǎng) D. 該校約有90%的家長(zhǎng)持反對(duì)態(tài)度
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)坐標(biāo)分別為A(2,0),B(0,4),C(﹣3,2).
(1)如圖,求△ABC的面積.
(2)若點(diǎn)P的坐標(biāo)為(m,0),
①請(qǐng)直接寫出線段AP的長(zhǎng)為______(用含m的式子表示);
②當(dāng)S△PAB=2S△ABC時(shí),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知AC⊥BC于C,BC=a,CA=b,AB=c,下列選項(xiàng)中⊙O的半徑為的是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的平面直角坐標(biāo)系中,畫出函數(shù)y=2x+4的圖象;
(1)求圖象與x軸的交點(diǎn)A的坐標(biāo),與y軸交點(diǎn)B的坐標(biāo);
(2)在(1)的條件下,求出△AOB的面積;
(3)利用圖象直接寫出:當(dāng)y<0時(shí),x的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com