【題目】集合M={x|1<x+1≤3},N={x|x2﹣2x﹣3>0},則(RM)∩(RN)等于(
A.(﹣1,3)
B.(﹣1,0)∪(2,3)
C.(﹣1,0]∪[2,3)
D.[﹣1,0]∪(2,3]

【答案】D
【解析】解:∵M(jìn)={x|0<x≤2},N={x|x<﹣1或x>3}, ∴(RM)∩(RN)=[﹣1,0]∪(2,3].
故選:D.
求出集合M,N,求出補(bǔ)集,然后求解交集即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:△ABC中,AB=AC,∠B=α.
(1)如圖1,點(diǎn)D,E分別在邊AB,AC上,線段DE的垂直平分線MN交直線BC于點(diǎn)M,交DE于點(diǎn)N,求證:BD+CE=BC.需補(bǔ)充條件∠EMN= (用含α的式子表示)補(bǔ)充條件后并證明;

(2)把(1)中的條件改為點(diǎn)D,E分別在邊BA、AC延長(zhǎng)線上,線段DE的垂直平分線MN交直線BC于點(diǎn)M,交DE于點(diǎn)N(如圖2),并補(bǔ)充條件∠EMN=(用含α的式子表示),通過(guò)觀察或測(cè)量,猜想線段BD,CE與BC之間滿足的數(shù)量關(guān)系,并予以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知2a=5,2b=3,求2a+b+3的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD為菱形,AB=BD,點(diǎn)BC、D、G四個(gè)點(diǎn)在同一個(gè)圓⊙O上,連接BG 并延長(zhǎng)交AD于點(diǎn)F,連接DG并延長(zhǎng)交AB于點(diǎn)EBDCG交于點(diǎn)H,連接FH,下列結(jié) 論:①AE=DF②FH∥AB;③△DGH∽△BGE;當(dāng)CG⊙O的直徑時(shí),DF=AF.其中正確結(jié)論的個(gè)數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)AB坐標(biāo)分別為(1,0),(3,2),連接AB,將線段AB平移后得到線段A'B',點(diǎn)A的對(duì)應(yīng)點(diǎn)A' 坐標(biāo)為(2,1),則點(diǎn)B' 坐標(biāo)為(

A.(4,2)B.(43)C.(6,2)D.( 6,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(11·湖州)計(jì)算a2·a3 , 正確的結(jié)果是( )
A.2a6
B.2a5
C.a6
D.a5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】植樹(shù)節(jié)期間,某單位欲購(gòu)進(jìn)A、B兩種樹(shù)苗,若購(gòu)進(jìn)A種樹(shù)苗3棵,B種樹(shù)苗5,需2100元,若購(gòu)進(jìn)A種樹(shù)苗4,B種樹(shù)苗10,需3800元.

(1)求購(gòu)進(jìn)A、B兩種樹(shù)苗的單價(jià);

(2)若該單位準(zhǔn)備用不多于8000元的錢購(gòu)進(jìn)這兩種樹(shù)苗共30棵,求A種樹(shù)苗至少需購(gòu)進(jìn)多少棵?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)組織同學(xué)們春游,如果全部租45座的車,則有15人沒(méi)座位;如果全部租60座的車,那么空出一輛車,其余車剛好座滿,設(shè)有x輛車,那么可列出一元一次方程為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,每個(gè)圓周上的數(shù)是按下述規(guī)則逐次標(biāo)出的:第一次先在圓周上標(biāo)出0,1兩個(gè)數(shù)(如圖1);第二次又在第一次標(biāo)出的兩個(gè)數(shù)之間的圓周上,分別標(biāo)出這兩個(gè)數(shù)的和(圖2);第三次再在第二次標(biāo)出的所有相鄰兩數(shù)之間的圓周上,分別標(biāo)出相鄰兩數(shù)的和(如圖3).按此規(guī)則以此類推,第2013次標(biāo)完數(shù)字后,圓周上所有數(shù)字的和S2013=

查看答案和解析>>

同步練習(xí)冊(cè)答案