【題目】平面直角坐標系中,點A、B坐標分別為(0,4)、(2,0),點C為直線AB上一點,若BC=3AC,則點C的坐標為_____.
【答案】(,3)或(﹣1,6).
【解析】
由點C為直線AB上一點,且BC=3AC,可知C點的位置有兩種情況:點C在線段AB上或點C在線段BA延長線上,分別構(gòu)造相似三角形,從而得出CD和DO,即為點C坐標.
①當點C在線段AB上,如圖,作C1D1∥OB,交y軸于點D1,
∴,
∴C1D1=OB=,AD1=OA=1,
∴OD1=OA﹣AD1=4﹣1=3,
∴點C1的坐標為(,3);
②當點C在線段BA延長線上,如圖,作C2D2∥OB,交y軸于點D2,
∴,
∴C2D2=OB=1,AD2=OA=2,
∴OD2=OA+AD2=4+2=6,
∴點C2的坐標為(﹣1,6);
故答案為:或(﹣1,6).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將長方形紙片ABCD折疊,使點D與點B重合,點C落在點C'處,折痕為EF,若∠ABE=25°,則∠EFC'的度數(shù)為( 。
A.122.5°B.130°C.135°D.140°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,BC=16cm,AC=12cm,點P從點B出發(fā),沿BC以2cm/s的速度向點C移動,點Q從點C出發(fā),以1cm/s的速度向點A移動,若點P、Q分別從點B、C同時出發(fā),設(shè)運動時間為t s,當t=時,△CPQ與△CBA相似.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某體育用品商場采購員要到廠家批發(fā)購進籃球和排球共100個,付款總額不得超過11815元.已知:廠家兩種球的批發(fā)價如(表)、商場在某兩天的零售信息如(表):
品名 | 廠家批發(fā)價(元/個) |
籃球 | 130 |
排球 | 100 |
(表)
籃球(個) | 排球(個) | 零售總價(元) | |
第一天 | 8 | 5 | 1880 |
第二天 | 6 | 10 | 2160 |
(表)
請解決以下問題:
(1)求出體育商場出售籃球和排球的零售單價.
(2)該采購員最多可從廠家購進籃球多少個.
(3)若該商場把這100個球全部以零售價售出,為使商場的利潤不低于2580元,則采購員采購的方案有哪幾種?該商場最多可盈利__________元.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,拋物線y=ax2+bx+c與直線y=﹣x+6分別交于x軸和y軸上同一點,交點分別是點B和點C,且拋物線的對稱軸為直線x=4.
(1)求出拋物線與x軸的兩個交點A,B的坐標.
(2)試確定拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們規(guī)定:a*b=,則下列等式中對于任意實數(shù) a、b、c 都成立的是( )
①a+(b*c)=(a+b)*(a+c) ②a*(b+c)=(a+b)*c
③a*(b+c)=(a*b)+(a*c) ④(a*b)+c= +(b*2c)
A. ①②③ B. ①②④ C. ①③④ D. ②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過點A(﹣1,0),B(3,0),C(0,3)三點.
(1)求此拋物線的解析式;
(2)若點M是線段BC上的點(不與B,C重合),過M作NM∥y軸交拋物線于N,設(shè)點M的橫坐標為m,請用含m的代數(shù)式表示MN的長;
(3)在(2)的條件下,連接NB,NC,是否存在點M,使△BNC的面積最大?若存在,求m的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+3x交x軸正半軸于點A(6,0),頂點為M,對稱軸MB交x軸于點B,過點C(2,0)作射線CD交MB于點D(D在x軸上方),OE∥CD交MB于點E,EF∥x軸交CD于點F,作直線MF.
(1)求a的值及M的坐標;
(2)當BD為何值時,點F恰好落在該拋物線上?
(3)當∠DCB=45°時:
①求直線MF的解析式;
②延長OE交FM于點G,四邊形DEGF和四邊形OEDC的面積分別記為S1、S2 , 則S1:S2的值為(直接寫答案)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中有一直角三角形AOB,O為坐標原點,OA=1,tan∠BAO=3,將此三角形繞原點O逆時針旋轉(zhuǎn)90°,得到△DOC,拋物線y=ax2+bx+c經(jīng)過點A,B,C.
(1)求拋物線的解析式;
(2)若點P是第二象限內(nèi)拋物線上的動點,其橫坐標為t,
①設(shè)拋物線對稱軸l與x軸交于一點E,連接PE,交CD于F,求出當△CEF與△COD相似時,點P的坐標;
②是否存在一點P,使△PCD的面積最大?若存在,求出△PCD的面積的最大值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com