二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,給出下列四個結(jié)論:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正確結(jié)論的個數(shù)是(  )
A.4個B.3個C.2個D.1個
B

試題分析:∵拋物線和x軸有兩個交點,
∴b2﹣4ac>0,
∴4ac﹣b2<0,∴①正確;
∵對稱軸是直線x﹣1,和x軸的一個交點在點(0,0)和點(1,0)之間,
∴拋物線和x軸的另一個交點在(﹣3,0)和(﹣2,0)之間,
∴把(﹣2,0)代入拋物線得:y=4a﹣2b+c>0,
∴4a+c>2b,∴②錯誤;
∵把(1,0)代入拋物線得:y=a+b+c<0,
∴2a+2b+2c<0,
∵b=2a,
∴3b,2c<0,∴③正確;
∵拋物線的對稱軸是直線x=﹣1,
∴y=a﹣b+c的值最大,
即把(m,0)(m≠0)代入得:y=am2+bm+c<a﹣b+c,
∴am2+bm+b<a,
即m(am+b)+b<a,∴④正確;
即正確的有3個,
故選B.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示的拋物線是把y=-x2經(jīng)過平移而得到的.這時拋物線過原點O和x軸正向上一點A,頂點為P,∠OPA=90°;
①求拋物線的頂點P的坐標及解析表達式;
②求如圖所示的拋物線對應的二次函數(shù)在-
1
2
≤x≤
1
2
時的最大值和最小值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系xOy中,拋物線y=mx2-2mx-2(m≠0)與y軸交于點A,其對稱軸與x軸交于點B.
(1)求點A,B的坐標;
(2)設直線l與直線AB關于該拋物線的對稱軸對稱,求直線l的解析式;
(3)若該拋物線在-2<x<-1這一段位于直線l的上方,并且在2<x<3這一段位于直線AB的下方,求該拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

今年5月1日起實施《青海省保障性住房準入分配退出和運營管理實施細則》規(guī)定:公共租賃住房和廉租住房并軌運行(以下簡稱并軌房),計劃10年內(nèi)解決低收入人群住房問題.已知第x年(x為正整數(shù))投入使用的并軌房面積為y百萬平方米,且y與x的函數(shù)關系式為y=-x+5.由于物價上漲等因素的影響,每年單位面積租金也隨之上調(diào).假設每年的并軌房全部出租完,預計第x年投入使用的并軌房的單位面積租金z與時間x滿足一次函數(shù)關系如下表:
時間x(單位:年,x為正整數(shù))
1
2
3
4
5

單位面積租金z(單位:元/平方米)
50
52
54
56
58
 
 
(1)求出z與x的函數(shù)關系式;
(2)設第x年政府投入使用的并軌房收取的租金為W百萬元,請問政府在第幾年投入使用的并軌房收取的租金最多,最多為多少百萬元?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系中, 拋物線+與直線交于A, B兩點,點A在點B的左側(cè).
(1)如圖1,當時,直接寫出A,B兩點的坐標;
(2)在(1)的條件下,點P為拋物線上的一個動點,且在直線AB下方,試求出△ABP面積的最大值及此時點P的坐標;
(3)如圖2,拋物線+ 軸交于C,D兩點(點C在點D的左側(cè)).在直線上是否存在唯一一點Q,使得∠OQC=90°?若存在,請求出此時的值;若不存在,請說明理由.

圖1                                   圖2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:矩形ABCD中,M為BC邊上一點, AB=BM=10,MC=14,如圖1,正方形EFGH的頂點E和點B重合,點F、G、H分別在邊AB、AM、BC上.如圖2,P為對角線AC上一動點,正方形EFGH從圖1的位置出發(fā),以每秒1個單位的速度沿BC向點C勻速移動;同時,點P從C點出發(fā),以每秒1個單位的速度沿CA向點A勻速移動.當點F到達線段AC上時,正方形EFGH和點P同時停止運動.設運動時間為t秒,解答下列問題:
(1)在整個運動過程中,當點F落在線段AM上和點G落在線段AC上時,分別求出對應t的值;
(2)在整個運動過程中,設正方形重疊部分面積為S,請直接寫出S與t之間的函數(shù)關系式以及自變量t的取值范圍;
(3)在整個運動過程中,是否存在點P,使是以DG為腰的等腰三角形?若存在,求出t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知反比例函數(shù)y=的圖象如圖,則二次函數(shù)y=2kx2﹣4x+k2的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

二次函數(shù)(b>0)與反比例函數(shù)在同一坐標系中的圖象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知P(﹣3,m)和Q(1,m)是拋物線y=2x2+bx+1上的兩點.
(1)求b的值;
(2)判斷關于x的一元二次方程2x2+bx+1=0是否有實數(shù)根,若有,求出它的實數(shù)根;若沒有,請說明理由;
(3)將拋物線y=2x2+bx+1的圖象向上平移k(k是正整數(shù))個單位,使平移后的圖象與x軸無交點,求k的最小值.

查看答案和解析>>

同步練習冊答案