【題目】按指定的方法解下列方程:

1(配方法)

2(因式分解法)

【答案】1 x1= ,x2=;(2x1=2,x2=-3

【解析】

1)方程兩邊都除以2將二次項(xiàng)系數(shù)化為1,常數(shù)項(xiàng)移動(dòng)右邊,兩邊都加上一次項(xiàng)系數(shù)一半的平方,左邊化為完全平方式,右邊合并,開方轉(zhuǎn)化為兩個(gè)一元一次方程來求解;
2)將方程整理后,左邊化為積的形式,然后利用兩數(shù)相乘積為0,兩因式中至少有一個(gè)為0轉(zhuǎn)化為兩個(gè)一元一次方程來求解

解:(12x2-5x-4=0
變形得:x2-x=2,
配方得:x2-x+,即(x-2=,
開方得:x-,
x1= x2=;
23x-2+x2-2x=0,
變形得:3x-2+xx-2=0,即(x-2)(x+3=0,
可得x-2=0x+3=0,
解得:x1=2,x2=-3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車從A地駛向B地,并以各自的速度勻速行駛,甲車比乙車早行駛2 h,并且甲車途中休息了0.5 h,如圖是甲、乙兩車行駛的路程y(km)與時(shí)間x(h)的函數(shù)圖象

(1)求出圖中ma的值.

(2)求出甲車行駛的路程y(km)與時(shí)間x(h)的函數(shù)關(guān)系式,并寫出相應(yīng)的x的取值范圍.

(3)當(dāng)乙車行駛多長時(shí)間時(shí),兩車恰好相距50 km?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=,AD=10.連接BD,∠DBC的角平分線BE交DC于點(diǎn)E,現(xiàn)把△BCE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),記旋轉(zhuǎn)后的△BCE為△BC′E′.當(dāng)射線BE′和射線BC′都與線段AD相交時(shí),設(shè)交點(diǎn)分別為F,G.若△BFD為等腰三角形,則線段DG長為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個(gè)古代車輪的碎片,小明為求其外圓半徑,連接外圓上的兩點(diǎn)A、B,并使AB與車輪內(nèi)圓相切于點(diǎn)D,半徑為OC⊥AB交外圓于點(diǎn)C.測得CD=10cm,AB=60cm,則這個(gè)車輪的外圓半徑是( )

A.10cm
B.30cm
C.60cm
D.50cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊△ABC中,點(diǎn)O在邊AB上,⊙O過點(diǎn)B且分別與邊AB、BC相交于點(diǎn)D、E、F是AC上的點(diǎn),判斷下列說法錯(cuò)誤的是(
A.若EF⊥AC,則EF是⊙O的切線
B.若EF是⊙O的切線,則EF⊥AC
C.若BE=EC,則AC是⊙O的切線
D.若BE= EC,則AC是⊙O的切線

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△AOB中,∠O=90°,AO=8cm,BO=6cm,點(diǎn)C從A點(diǎn)出發(fā),在邊AO上以4cm/s的速度向O點(diǎn)運(yùn)動(dòng),與此同時(shí),點(diǎn)D從點(diǎn)B出發(fā),在邊BO上以3cm/s的速度向O點(diǎn)運(yùn)動(dòng),過OC的中點(diǎn)E作CD的垂線EF,則當(dāng)點(diǎn)C運(yùn)動(dòng)了 s時(shí),以C點(diǎn)為圓心,2cm為半徑的圓與直線EF相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某人因需要經(jīng)常去復(fù)印資料,甲復(fù)印社按A4紙每102元計(jì)費(fèi),乙復(fù)印社則按A4紙每100.8元計(jì)費(fèi),但需按月付一定數(shù)額的承包費(fèi).兩復(fù)印社每月收費(fèi)情況如圖所示,根據(jù)圖中提供的信息解答下列問題:

1)乙復(fù)印社要求客戶每月支付的承包費(fèi)是_______元;

2)當(dāng)每月復(fù)印_______頁時(shí),兩復(fù)印社實(shí)際收費(fèi)相同;

3)如果每月復(fù)印200頁時(shí),應(yīng)選擇_______復(fù)印社?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程(k-2)x2-4x+2=0有兩個(gè)不相等的實(shí)數(shù)根.

(1)k的取值范圍;

(2)如果k是符合條件的最大整數(shù),且一元二次方程x2-4x+k=0x2+mx-1=0有一個(gè)相同的根,求此時(shí)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有一個(gè)種植總面積為540m2的矩形塑料溫棚,分壟間隔套種草莓和西紅柿共24壟,種植的草莓或西紅柿單種農(nóng)作物的總壟數(shù)不低于10壟,又不超過14(壟數(shù)為正整數(shù)),它們的占地面積、產(chǎn)量、利潤分別如下:


占地面積(m/壟)

產(chǎn)量(千克/壟)

利潤(元/千克)

西紅柿

30

160

1.1

草莓

15

50

1.6

1)若設(shè)草莓共種植了壟,通過計(jì)算說明共有幾種種植方案?分別是哪幾種?

2)在這幾種種植方案中,哪種方案獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案