【題目】如圖,反比例函數(shù)yk≠0,x0)的圖象與矩形OABC的邊ABBC分別交于點(diǎn)E、F,E6),且EBC的中點(diǎn),Dx軸負(fù)半軸上的點(diǎn).

1)求反比倒函數(shù)的表達(dá)式和點(diǎn)F的坐標(biāo);

2)若D(﹣,0),連接DE、DFEF,則DEF的面積是 

【答案】1yF3,3);(2SDEF9

【解析】

1)利用待定系數(shù)法即可求得反比例函數(shù)的解析式,根據(jù)題意求得B的坐標(biāo),進(jìn)而得到F的橫坐標(biāo),代入解析式即可求得縱坐標(biāo);

2)設(shè)DEy軸于H,先證得HOC的中點(diǎn),然后根據(jù)SDEFS矩形OABC+SODHSADFSCEHSBEF即可求得.

1反比例函數(shù)yk≠0,x0)的圖象過E,6),

k×69,

反比例函數(shù)的解析式為y,

EBC的中點(diǎn),

B36),

F的橫坐標(biāo)為3,

x3代入y得,y3

F3,3);

2)設(shè)DEy軸于H

BCx軸,

∴△DOH∽△ECH,

1,

OHCH3

SDEFS矩形OABC+SODHSADFSCEHSBEF3×6+××3×3+×39

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,A(4,0),B(0,3),C(4,3),IABC的內(nèi)心,將ABC繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°后,I的對(duì)應(yīng)點(diǎn)I'的坐標(biāo)為( 。

A. (﹣2,3) B. (﹣3,2) C. (3,﹣2) D. (2,﹣3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】教練想從甲、乙兩名運(yùn)動(dòng)員中選拔一人參加射擊錦標(biāo)賽,故先在射擊隊(duì)舉行了一場(chǎng)選拔比賽.在相同的條件下各射靶次,每次射靶的成績情況如圖所示.

甲射靶成績的條形統(tǒng)計(jì)圖

乙射靶成績的折線統(tǒng)計(jì)圖

)請(qǐng)你根據(jù)圖中的數(shù)據(jù)填寫下表:

平均數(shù)

眾數(shù)

方差

__________

__________

__________

)根據(jù)選拔賽結(jié)果,教練選擇了甲運(yùn)動(dòng)員參加射擊錦標(biāo)賽,請(qǐng)給出解釋.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀資料:我們把頂點(diǎn)在圓上,并且一邊和圓相交、另一邊和圓相切的角叫做弦切角,如下左圖∠ABC所示。

同學(xué)們研究發(fā)現(xiàn):P為圓上任意一點(diǎn),當(dāng)弦AC經(jīng)過圓心O時(shí),且AB切⊙O于點(diǎn)A,此時(shí)弦切角∠CAB=∠P(圖甲)

證明:∵AB切⊙O于點(diǎn)A, ∴∠CAB=90°, 又∵AC是直徑, ∴∠P=90° ∴∠CAB=∠P

問題拓展:若AC不經(jīng)過圓心O(如圖乙),該結(jié)論:弦切角∠CAB=∠P還成立嗎?

請(qǐng)說明理由。

知識(shí)運(yùn)用:如圖,AD是△ABC中∠BAC的平分線,經(jīng)過點(diǎn)A的⊙O與BC切于點(diǎn)D,與AB、AC分別相交于E、F。 求證:EF∥BC。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙的每個(gè)小方格都是邊長為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上.

1)畫出△ABC關(guān)于原點(diǎn)對(duì)稱的△A1B1C1;

2)畫出△ABC向上平移5個(gè)單位后的△A2B2C2,并求出平移過程中△ABC掃過的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圖形都是由面積為1的正方形按一定的規(guī)律組成,其中,第(1)個(gè)圖形中面積為1的正方形有2個(gè),第(2)個(gè)圖形中面積為1的正方形有5個(gè),第(3)個(gè)圖形中面積為1的正方形有9個(gè),按此規(guī)律,則第(n)個(gè)圖形中面積為1的正方形的個(gè)數(shù)為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖象與軸交于,兩點(diǎn)左側(cè)),與軸交于點(diǎn),頂點(diǎn)為

1)當(dāng)時(shí),求四邊形的面積;

2)在(1)的條件下,在第二象限拋物線對(duì)稱軸左側(cè)上存在一點(diǎn),使,求點(diǎn)的坐標(biāo);

3)如圖2,將(1)中拋物線沿直線向斜上方向平移個(gè)單位時(shí),點(diǎn)為線段上一動(dòng)點(diǎn),軸交新拋物線于點(diǎn),延長,且,若的外角平分線交點(diǎn)在新拋物線上,求點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)對(duì)全校學(xué)生進(jìn)行文明禮儀知識(shí)測(cè)試,為了解測(cè)試結(jié)果,隨機(jī)抽取部分學(xué)生的成績進(jìn)行分析,將成績分為三個(gè)等級(jí):不合格、一般、優(yōu)秀,并繪制成如下兩幅統(tǒng)計(jì)圖(不完整).

請(qǐng)你根據(jù)圖中所給的信息解答下列問題:

1)請(qǐng)將以上兩幅統(tǒng)計(jì)圖補(bǔ)充完整;

2)若“一般”和“優(yōu)秀”均被視為達(dá)標(biāo)成績,則該校被抽取的學(xué)生中有 人達(dá)標(biāo);

3)若該校學(xué)生有1200人,請(qǐng)你估計(jì)此次測(cè)試中,全校達(dá)標(biāo)的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具店購進(jìn)一批紀(jì)念冊(cè),每本進(jìn)價(jià)為20元,出于營銷考慮,要求每本紀(jì)念冊(cè)的售價(jià)不低于20元且不高于28元,在銷售過程中發(fā)現(xiàn)該紀(jì)念冊(cè)每周的銷售量y(本)與每本紀(jì)念冊(cè)的售價(jià)x(元)之間滿足一次函數(shù)關(guān)系:當(dāng)銷售單價(jià)為22元時(shí),銷售量為36本;當(dāng)銷售單價(jià)為24元時(shí),銷售量為32本.

(1)求出y與x的函數(shù)關(guān)系式;

(2)當(dāng)文具店每周銷售這種紀(jì)念冊(cè)獲得150元的利潤時(shí),每本紀(jì)念冊(cè)的銷售單價(jià)是多少元?

(3)設(shè)該文具店每周銷售這種紀(jì)念冊(cè)所獲得的利潤為w元,將該紀(jì)念冊(cè)銷售單價(jià)定為多少元時(shí),才能使文具店銷售該紀(jì)念冊(cè)所獲利潤最大?最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案