(2013•東營)如圖,圓柱形容器中,高為1.2m,底面周長為1m,在容器內壁離容器底部0.3m的點B處有一蚊子,此時一只壁虎正好在容器外壁,離容器上沿0.3m與蚊子相對的點A處,則壁虎捕捉蚊子的最短距離為
1.3
1.3
m(容器厚度忽略不計).
分析:將容器側面展開,建立A關于EF的對稱點A′,根據(jù)兩點之間線段最短可知A′B的長度即為所求.
解答:解:如圖:
∵高為1.2m,底面周長為1m,在容器內壁離容器底部0.3m的點B處有一蚊子,
此時一只壁虎正好在容器外壁,離容器上沿0.3m與蚊子相對的點A處,
∴A′D=0.5m,BD=1.2m,
∴將容器側面展開,作A關于EF的對稱點A′,
連接A′B,則A′B即為最短距離,
A′B=
A′D2+BD2

=
0.52+1.22

=1.3(m).
故答案為:1.3.
點評:本題考查了平面展開---最短路徑問題,將圖形展開,利用軸對稱的性質和勾股定理進行計算是解題的關鍵.同時也考查了同學們的創(chuàng)造性思維能力.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•東營)如圖,已知AB∥CD,AD和BC相交于點O,∠A=50°,∠AOB=105°,則∠C等于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•東營)如圖,正方形ABCD中,分別以B、D為圓心,以正方形的邊長a為半徑畫弧,形成樹葉形(陰影部分)圖案,則樹葉形圖案的周長為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•東營)如圖,AB為⊙O的直徑,點C為⊙O上一點,若∠BAC=∠CAM,過點C作直線l垂直于射線AM,垂足為點D.
(1)試判斷CD與⊙O的位置關系,并說明理由;
(2)若直線l與AB的延長線相交于點E,⊙O的半徑為3,并且∠CAB=30°,求CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•東營)如圖,在平面直角坐標系中,一次函數(shù)y=nx+2(n≠0)的圖象與反比例函數(shù)y=
m
x
(m≠0)
在第一象限內的圖象交于點A,與x軸交于點B,線段OA=5,C為x軸正半軸上一點,且sin∠AOC=
4
5

(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△AOB的面積.

查看答案和解析>>

同步練習冊答案