【題目】某生物小組觀察一植物生長,得到的植物高度(單位:厘米)與觀察時間(單位:天)的關(guān)系,并畫出如下圖所示的圖象(是線段,直線平行于軸).下列說法錯誤的是(

A.從開始觀察時起,50天后該植物停止長高;

B.直線的函數(shù)表達式為;

C.40天,該植物的高度為14厘米;

D.該植物最高為15厘米.

【答案】D

【解析】

根據(jù)平行線間的距離相等可知50天后植物的高度不變,也就是停止長高,可判斷A;設(shè)直線AC的解析式為y=kx+bk≠0),然后利用待定系數(shù)法求出直線AC線段的解析式可判斷B;把x=40代入②的結(jié)論進行計算即可判斷C;把x=50代入②的結(jié)論進行計算可判斷D

解:A.∵CD//x軸,

從第50天開始植物的高度不變,

A的說法正確;

B.設(shè)直線AC的解析式為y=kx+bk≠0),

經(jīng)過點A06),B3012),

,

解得

所以,直線AC的解析式為y=x+60≤x≤50),

B的結(jié)論正確;

C.x=40時,y=×40+6=14

即第40天,該植物的高度為14厘米;

C的說法正確;

Dx=50時,y=×50+6=16,

即第50天,該植物的高度為16厘米;

D的說法錯誤.

故選:D

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,解答下列問題:

材料一:一個三位以上的自然數(shù),如果該自然數(shù)的末三位表示的數(shù)與末三位之前的數(shù)字表示的數(shù)之差是11的倍數(shù),我們稱滿足此特征的數(shù)叫“網(wǎng)紅數(shù)”,如:65362,3626529711×27,稱65362是“網(wǎng)紅數(shù)”.

材料二:對任的自然數(shù)p均可分解為P100x+10y+zx0,0y9,0z9xy,z均為整數(shù))如:527852×100+10×7+8,規(guī)定:GP)=

1)求證:任兩個“網(wǎng)紅數(shù)”之和一定能被11整除;

2)已知:S300+10b+a,t1000b+100a+11421a70b5,其ab均為整數(shù)),當s+t為“網(wǎng)紅數(shù)”時,求Gt)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】D、E分別是不等邊三角形ABC(即ABBCAC)的邊AB、AC的中點,OABC所在平面上的動點,連接OBOC,點GF分別是OB、OC的中點,順次連接點D、GF、E

1)如圖,當點OABC的內(nèi)部時,求證:四邊形DGFE是平行四邊形;

2)若四邊形DGFE是菱形,點O所在位置應(yīng)滿足什么條件?(直接寫出答案不需要說明理由.)

3)在圖2中作出點O,使得四邊形DGFE是正方形(保留作圖痕跡,不寫作法).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的頂點A,Bx軸的負半軸上,反比例函數(shù)yk1≠0)在第二象限內(nèi)的圖象經(jīng)過正方形ABCD的頂點Dm2)和BC邊上的點Gn,),直線y=k2x+bk2≠0)經(jīng)過點D,點G,則不等式≤k2x+b的解集為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2014蘭州)蘭州市某中學(xué)對本校初中學(xué)生完成家庭作業(yè)的時間做了總量控制,規(guī)定每天完成家庭作業(yè)的時間不超過1.5小時.該校數(shù)學(xué)課外興趣小組對本校初中學(xué)生回家完成作業(yè)的時間做了一次隨機抽樣調(diào)查,并繪制出頻數(shù)分布表(如圖①)和頻數(shù)分布直方圖(如圖②)的一部分.

1)在圖①中,________,________;

2)補全頻數(shù)分布直方圖;

3)請估計該校1400名初中學(xué)生中,約有多少學(xué)生在1.5小時以內(nèi)完成了家庭作業(yè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實踐

問題情境

如圖1均為等邊三角形,點,在同一條直線上,連接;

探究發(fā)現(xiàn)

1)善思組發(fā)現(xiàn):,請你幫他們寫出推理過程;

2)鉆研組受善思組的啟發(fā),求出了度數(shù),請直接寫出等于______度;

3)奮進組在前面兩組的基礎(chǔ)上又探索出了的位置關(guān)系為______(請直接寫出結(jié)果);

拓展探究

4)如圖2,均為等腰直角三角形,,點,,在同一條直線上,邊上的高,連接,試探究,,之間有怎樣的數(shù)量關(guān)系.

創(chuàng)新組類比善思組的發(fā)現(xiàn),很快證出,進而得出.請你寫出,,之間的數(shù)量關(guān)系并幫創(chuàng)新組完成后續(xù)的證明過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:把RtABC和RtDEF按如圖甲擺放(點C與點E重合),點B、C(E)、F在同一條直線上.BAC=DEF=90°,ABC=45°,BC=9cm,DE=6cm,EF=8cm.如圖乙,DEF從圖甲的位置出發(fā),以1cm/s的速度沿CB向ABC勻速移動,在DEF移動的同時,點P從DEF的頂點F出發(fā),以3cm/s的速度沿FD向點D勻速移動.當點P移動到點D時,P點停止移動,DEF也隨之停止移動.DE與AC相交于點Q,連接BQ、PQ,設(shè)移動時間為t(s).解答下列問題:

(1)設(shè)三角形BQE的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;

(2)當t為何值時,三角形DPQ為等腰三角形?

(3)是否存在某一時刻t,使P、Q、B三點在同一條直線上?若存在,求出此時t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料并解答下列問題:如圖1,把平面內(nèi)一條數(shù)軸繞原點逆時針旋轉(zhuǎn)角得到另一條數(shù)軸軸和軸構(gòu)成一個平面斜坐標系

規(guī)定:過點軸的平行線,交軸于點,過點軸的平行線,交軸于點,若點軸對應(yīng)的實數(shù)為,點軸對應(yīng)的實數(shù)為,則稱有序?qū)崝?shù)對為點在平面斜坐標系中的斜坐標.如圖2,在平面斜坐標系中,已知,點的斜坐標是,點的斜坐標是

1)連接,求線段的長;

2)將線段繞點順時針旋轉(zhuǎn)(點與點對應(yīng)),求點的斜坐標;

3)若點是直線上一動點,在斜坐標系確定的平面內(nèi)以點為圓心,長為半徑作,當⊙軸相切時,求點的斜坐標,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在正方形ABCD中,點EAB邊上的一個動點(點E與點AB不重合),連接CE,過點B于點G,交AD于點F

1)求證:;

2)如圖(2),當點E運動到AB的中點時,連接DG,求證:

3)如圖(3),在(2)的條件下,過點C于點H,分別交AD,BF于點M,N,求證:

查看答案和解析>>

同步練習冊答案