【題目】作圖:
(1)如圖甲,以點(diǎn)O為中心,把點(diǎn)P順時(shí)針旋轉(zhuǎn)45°;
(2)如圖乙,以點(diǎn)O為中心,把線段AB逆時(shí)針旋轉(zhuǎn)90°;
(3)如圖丙,以點(diǎn)O為中心,把△ABC順時(shí)針旋轉(zhuǎn)120°;
(4)如圖丁,以點(diǎn)B為中心,把△ABC旋轉(zhuǎn)180°.
【答案】(1)作圖見解析;(2)作圖見解析;(3)作圖見解析;(4)作圖見解析.
【解析】試題分析:(1)連接OP,將OP順時(shí)針旋轉(zhuǎn)45°,即可得到P的對(duì)應(yīng)點(diǎn)P′,
(2)根據(jù)旋轉(zhuǎn)角為90°,旋轉(zhuǎn)方向是逆時(shí)針,旋轉(zhuǎn)中心為O可找出旋轉(zhuǎn)后各點(diǎn)的對(duì)應(yīng)點(diǎn),然后順次連接即可,
(3)根據(jù)旋轉(zhuǎn)角為120°,旋轉(zhuǎn)方向是順時(shí)針,旋轉(zhuǎn)中心為O可找出旋轉(zhuǎn)后各點(diǎn)的對(duì)應(yīng)點(diǎn),然后順次連接即可,
(4) 根據(jù)旋轉(zhuǎn)角為180°,旋轉(zhuǎn)中心為B可找出旋轉(zhuǎn)后各點(diǎn)的對(duì)應(yīng)點(diǎn),然后順次連接即可.
試題解析:
(1)如圖甲,點(diǎn)P′為所求,
(2)如圖乙,線段A′B′為所求,
(3)如圖丙,△A′B′C′為所求,
(4)如圖丁,△A′BC′為所求.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD,AB=6,點(diǎn)E在邊CD上,CE=2DE,將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF,下列結(jié)論:①△ABG≌△AFG;②BG=GC;③EG=DE+BG;④AG∥CF;⑤S△FCA=3.6,其中正確結(jié)論是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上點(diǎn)、點(diǎn)表示的數(shù)為、,則、兩點(diǎn)之間的距離;線段的中點(diǎn)表示的數(shù)為.已知數(shù)軸上有、兩點(diǎn),分別表示的數(shù)為和,點(diǎn)以每秒個(gè)單位的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),點(diǎn)以每秒個(gè)單位向左勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為秒()
()運(yùn)動(dòng)開始前,、兩點(diǎn)的距離為__________;線段的中點(diǎn)所表示的數(shù)為__________.
()它們按上述方式運(yùn)動(dòng),、兩點(diǎn)兩點(diǎn)經(jīng)過多少秒會(huì)相遇,相遇點(diǎn)所表示的數(shù)是什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象分別與反比例函數(shù)y=的圖象在第一象限交于點(diǎn)A(4,3),與y軸的負(fù)半軸交于點(diǎn)B,且OA=OB.
(1)求函數(shù)y=kx+b和y=的表達(dá)式;
(2)已知點(diǎn)C(0,5),試在該一次函數(shù)圖象上確定一點(diǎn)M,使得MB=MC,求此時(shí)點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【發(fā)現(xiàn)證明】
如圖1,點(diǎn)E,F分別在正方形ABCD的邊BC,CD上,∠EAF=45°,試判斷BE,EF,FD之間的數(shù)量關(guān)系.
小聰把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,通過證明△AEF≌△AGF;從而發(fā)現(xiàn)并證明了EF=BE+FD.
【類比引申】
(1)如圖2,點(diǎn)E、F分別在正方形ABCD的邊CB、CD的延長(zhǎng)線上,∠EAF=45°,連接EF,請(qǐng)根據(jù)小聰?shù)陌l(fā)現(xiàn)給你的啟示寫出EF、BE、DF之間的數(shù)量關(guān)系,并證明;
【聯(lián)想拓展】
(2)如圖3,如圖,∠BAC=90°,AB=AC,點(diǎn)E、F在邊BC上,且∠EAF=45°,若BE=3,EF=5,求CF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在一個(gè)盒子旦有紅球和白球共10個(gè),它們除顏色外都相同,將它們充分搖勻后,從中隨機(jī)抽出一個(gè),記下顏色后放回.在摸球活動(dòng)中得到如下數(shù)據(jù):
摸球總次數(shù) | 50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500 |
摸到紅球的頻率 | 17 | 32 | 44 | 64 | 78 | a | 103 | 122 | 136 | 148 |
摸到紅球的頻率 | 0.34 | 0.32 | 0.293 | 0.32 | 0.312 | 0.32 | 0.294 | b | 0.302 | c |
(1)請(qǐng)將表格中的數(shù)據(jù)補(bǔ)齊a= ;b= ;c= ;
(2)根據(jù)上表,完成折線統(tǒng)計(jì)圖;
當(dāng)摸球次數(shù)很大時(shí),摸到紅球的頻率將會(huì)接近 (精確到0.1)
(3)請(qǐng)你估計(jì),當(dāng)摸球次數(shù)很大時(shí),摸到紅球的頻率將會(huì)接近 (精確到0.1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將兩個(gè)完全相同的三角形紙片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.
(1)操作發(fā)現(xiàn)
如圖2,固定△ABC,使△DEC繞點(diǎn)C旋轉(zhuǎn),當(dāng)點(diǎn)D恰好落在AB邊上時(shí),填空:
①線段DE與AC的位置關(guān)系是_________;
②設(shè)△BDC的面積為S1,△AEC的面積為S2,則S1與S2的數(shù)量關(guān)系是____________.
(2)猜想論證
當(dāng)△DEC繞點(diǎn)C旋轉(zhuǎn)到圖3所示的位置時(shí),小明猜想(1)中S1與S2的數(shù)量關(guān)系仍然成立,并嘗試分別作出了△BDC和△AEC中BC、CE邊上的高,請(qǐng)你證明小明的猜想.
(3)拓展探究
已知∠ABC=60°,點(diǎn)D是其角平分線上一點(diǎn),BD=CD=4,DE//AB交BC于點(diǎn)E(如圖4).若在射線BA上存在點(diǎn)F,使,請(qǐng)直接寫出相應(yīng)的BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+5的圖象與反比例函數(shù)(k≠0)在第一象限的圖象交于A(1,n)和B兩點(diǎn).
(1)求反比例函數(shù)的解析式及點(diǎn)B坐標(biāo);
(2)在第一象限內(nèi),當(dāng)一次函數(shù)y=-x+5的值大于反比例函數(shù)(k≠0)的值時(shí),寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y1=x+b的圖象l與二次函數(shù)y2=﹣x2+mx+b的圖象C′都經(jīng)過點(diǎn)B(0,1)和點(diǎn)C,且圖象C′過點(diǎn)A(2﹣,0).
(1)求二次函數(shù)的最大值;
(2)設(shè)使y2>y1成立的x取值的所有整數(shù)和為s,若s是關(guān)于x的方程=0的根,求a的值;
(3)若點(diǎn)F、G在圖象C′上,長(zhǎng)度為的線段DE在線段BC上移動(dòng),EF與DG始終平行于y軸,當(dāng)四邊形DEFG的面積最大時(shí),在x軸上求點(diǎn)P,使PD+PE最小,求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com