【題目】有兩種酒精,一種濃度是60%,另一種濃度為90%,現(xiàn)在要配制成濃度為70%的酒精300克,問(wèn):每種需各取多少克?(200克,100克)
【答案】解:設(shè)取60%的酒精x克,則取90%的酒精(300﹣x)克,
則由題意得:60%x+(300﹣x)90%=300×70%,
解得:x=200.
所以300﹣x=100.
答:需60%的酒精200克,90%的酒精100克
【解析】設(shè)取60%的酒精x克,則取90%的酒精(300﹣x)克,根據(jù)一種濃度是60%,另一種濃度為90%,現(xiàn)在要配制成濃度為70%的灑精300克,可列方程求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1所示,已知拋物線(xiàn)的頂點(diǎn)為D,與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),E為對(duì)稱(chēng)軸上的一點(diǎn),連接CE,將線(xiàn)段CE繞點(diǎn)E按逆時(shí)針?lè)较蛐D(zhuǎn)90°后,點(diǎn)C的對(duì)應(yīng)點(diǎn)C′恰好落在y軸上.
(1)直接寫(xiě)出D點(diǎn)和E點(diǎn)的坐標(biāo);
(2)點(diǎn)F為直線(xiàn)C′E與已知拋物線(xiàn)的一個(gè)交點(diǎn),點(diǎn)H是拋物線(xiàn)上C與F之間的一個(gè)動(dòng)點(diǎn),若過(guò)點(diǎn)H作直線(xiàn)HG與y軸平行,且與直線(xiàn)C′E交于點(diǎn)G,設(shè)點(diǎn)H的橫坐標(biāo)為m(0<m<4),那么當(dāng)m為何值時(shí),=5:6?
(3)圖2所示的拋物線(xiàn)是由向右平移1個(gè)單位后得到的,點(diǎn)T(5,y)在拋物線(xiàn)上,點(diǎn)P是拋物線(xiàn)上O與T之間的任意一點(diǎn),在線(xiàn)段OT上是否存在一點(diǎn)Q,使△PQT是等腰直角三角形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中的錯(cuò)誤的是( ).
A、一組鄰邊相等的矩形是正方形
B、一組鄰邊相等的平行四邊形是菱形
C、一組對(duì)邊相等且有一個(gè)角是直角的四邊形是矩形
D、一組對(duì)邊平行且相等的四邊形是平行四邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知M=x2-2xy+y2 , N=2x2-6xy+3y2 , 求3M-[2M-N-4(M-N)]的值,其中x=-5,y=3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,河的兩岸l1與l2相互平行,A、B是l1上的兩點(diǎn),C、D是l2上的兩點(diǎn),某人在點(diǎn)A處測(cè)得∠CAB=90°,∠DAB=30°,再沿AB方向前進(jìn)20米到達(dá)點(diǎn)E(點(diǎn)E在線(xiàn)段AB上),測(cè)得∠DEB=60°,求C、D兩點(diǎn)間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知Rt△ACB中,∠C=90°,∠BAC=45°.
(1)(4分)用尺規(guī)作圖,在CA的延長(zhǎng)線(xiàn)上截取AD=AB,并連接BD(不寫(xiě)作法,保留作圖痕跡);
(2)(4分)求∠BDC的度數(shù);
(3)(4分)定義:在直角三角形中,一個(gè)銳角A的鄰邊與對(duì)邊的比叫做∠A的余切,記作cotA,即,根據(jù)定義,利用圖形求cot22.5°的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AE∥BF,AC平分∠BAD,交BF于點(diǎn)C,BD平分∠ABC,交AE于點(diǎn)D,連接CD.
(1)若AB=1,則BC的長(zhǎng)=;
(2)求證:四邊形ABCD是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用兩種方法證明“三角形的外角和等于360°”.
如圖,∠BAE、∠CBF、∠ACD是△ABC的三個(gè)外角.
求證∠BAE+∠CBF+∠ACD=360°.
證法1:∵ ,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°
∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).
∵ ,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.
請(qǐng)把證法1補(bǔ)充完整,并用不同的方法完成證法2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】?jī)蓚(gè)連續(xù)奇數(shù)的平方差是( )
A.6的倍數(shù)
B.8的倍數(shù)
C.12的倍數(shù)
D.16的倍數(shù)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com