畫出拋物線y=4(x-3)2+2的大致圖象,寫出它的最值和增減性.
因為頂點坐標為(3,2),對稱軸為x=3,
與y軸交點為(0,38),
因為△=144-4×2×19=144-152=-8<0,
所以與x軸無交點.
作圖得:最值2.
增減性:當x≥3時,y隨x的增大而增大;
當x≤3時,y隨x的增大而減。
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:單選題

已知二次函數(shù)y=ax2+bx有最大值,且圖象頂點在y軸的右側(cè),則函數(shù)y=ax+b與y=ax2+bx的圖象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知b<0時,二次函數(shù)y=ax2+bx+a2-1的圖象如下列四個圖之一所示.根據(jù)圖象分析,a的值等于( 。
A.-2B.-1C.1D.2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

實數(shù)x、y滿足(x-2)2+y2=3,那么,
y
x
的最大值是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知二次函數(shù)y=ax2+bx+c(a<0)的圖象如圖所示,當-5≤x≤0時,下列說法正確的是( 。
A.有最小值-5、最大值0B.有最小值-3、最大值6
C.有最小值0、最大值6D.有最小值2、最大值6

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

二次函數(shù)y=ax2+bx+c(a≠0)的最大值是0,化簡|a|+4ac-b2=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知二次函數(shù)y=(x-1)2-1(0≤x≤3)的圖象,如圖所示,關(guān)于該函數(shù)在所給自變量取值范圍內(nèi),下列說法正確的是( 。
A.有最小值0,有最大值3B.有最小值-1,有最大值0
C.有最小值-1,有最大值3D.有最小值-1,無最大值

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,梯形ABCD中,ABDC,∠ABC=90°,∠A=45°.AB=30,BC=x,其中15<x<30.作DE⊥AB于點E,將△ADE沿直線DE折疊,點A落在F處,DF交BC于點G.
(1)用含有x的代數(shù)式表示BF的長.
(2)設(shè)四邊形DEBG的面積為S,求S與x的函數(shù)關(guān)系式.
(3)當x為何值時,S有最大值,并求出這個最大值.
[參考公式:二次函數(shù)y=ax2+bx+c圖象的頂點坐標為(-
b
2a
,
4ac-b2
4a
)].

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖①,在Rt△ABC中,∠C=90°,邊BC的長為20cm,邊AC的長為hcm,在此三角形內(nèi)有一個矩形CFED,點D,E,F(xiàn)分別在AC,AB,BC上,設(shè)AD的長為xcm,矩形CFED的面積為y(單位:cm2).
(1)當h等于30時,求y與x的函數(shù)關(guān)系式;(不要求寫出自變量x的取值范圍)
(2)在(1)的條件下,矩形CFED的面積能否為180cm2?請說明理由;
(3)若y與x的函數(shù)圖象如圖②所示,求此時h的值.
(參考公式:二次函數(shù)y=ax2+bx+c,當x=-
b
2a
時,y最大(。┲=
4ac-b2
4a
.)

查看答案和解析>>

同步練習冊答案