如圖,在矩形OABC中,點(diǎn)A(0,10),C(8,0).沿直線CD折疊矩形OABC的一邊BC,使點(diǎn)B落在OA邊上的點(diǎn)E處.分別以O(shè)C, OA所在的直線為x軸,y軸建立平面直角坐標(biāo)系,拋物線經(jīng)過O,D,C三點(diǎn).
(1)求D的的坐標(biāo)及拋物線的解析式;
(2)一動(dòng)點(diǎn)P從點(diǎn)E出發(fā),沿EC以每秒2個(gè)單位長(zhǎng)的速度向點(diǎn)C運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿CO以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)O運(yùn)動(dòng),當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)C時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t為何值時(shí),以P、Q、C為頂點(diǎn)的三角形與△ADE相似?
(3)點(diǎn)N在拋物線對(duì)稱軸上,點(diǎn)M在拋物線上,是否存在這樣的點(diǎn)M與點(diǎn)N,使以M,N,C,E為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)M與點(diǎn)N的坐標(biāo)(不寫求解過程);若不存在,請(qǐng)說明理由.
(1);(2)或;(3)存在符合條件的M、N點(diǎn),且它們的坐標(biāo)為:①M(fèi)1(﹣4,﹣32),N1(4,﹣38);②M2(12,﹣32),N2(4,﹣26);③M3(4,),N3(4,).
解析試題分析:(1)根據(jù)折疊圖形的軸對(duì)稱性,△CED、△CBD全等,首先在Rt△CEO中求出OE的長(zhǎng),進(jìn)而可得到AE的長(zhǎng);在Rt△AED中,AD=AB﹣BD、ED=BD,利用勾股定理可求出AD的長(zhǎng).進(jìn)一步能確定D點(diǎn)坐標(biāo),利用待定系數(shù)法即可求出拋物線的解析式.
(2)由于∠DEC=90°,首先能確定的是∠AED=∠OCE,若以P、Q、C為頂點(diǎn)的三角形與△ADE相似,那么∠QPC=90°或∠PQC=90°,然后在這兩種情況下,分別利用相似三角形的對(duì)應(yīng)邊成比例求出對(duì)應(yīng)的t的值.
(3)由于以M,N,C,E為頂點(diǎn)的四邊形,邊和對(duì)角線都沒明確指出,所以要分情況進(jìn)行討論:①EC做平行四邊形的對(duì)角線,那么EC、MN必互相平分,由于EC的中點(diǎn)正好在拋物線對(duì)稱軸上,所以M點(diǎn)一定是拋物線的頂點(diǎn);
②EC做平行四邊形的邊,那么EC、MN平行且相等,首先設(shè)出點(diǎn)N的坐標(biāo),然后結(jié)合E、C的橫、縱坐標(biāo)差表示出M點(diǎn)坐標(biāo),再將點(diǎn)M代入拋物線的解析式中,即可確定M、N的坐標(biāo).
試題解析:(1)∵四邊形ABCO為矩形,∴∠OAB=∠AOC=∠B=90°,AB=CO=8,AO=BC=10.由題意,△BDC≌△EDC.∴∠B=∠DEC=90°,EC=BC=10,ED=BD.由勾股定理易得EO=6.∴AE=10﹣6=4,設(shè)AD=,則BD=ED=,由勾股定理,得,解得,,∴AD=3.∵拋物線過點(diǎn)D(3,10),C(8,0),O(0,0)∴,解得,∴拋物線的解析式為:.
(2)∵∠DEA+∠OEC=90°,∠OCE+∠OEC=90°,∴∠DEA=∠OCE,由(1)可得AD=3,AE=4,DE=5.而CQ=t,EP=2t,∴PC=10﹣2t.①當(dāng)∠PQC=∠DAE=90°,△ADE∽△QPC,∴=,即,解得.②當(dāng)∠QPC=∠DAE=90°,△ADE∽△PQC,∴=,即,解得.∴當(dāng)或時(shí),以P、Q、C為頂點(diǎn)的三角形與△ADE相似.
(3)假設(shè)存在符合條件的M、N點(diǎn),分兩種情況討論:①EC為平行四邊形的對(duì)角線,由于拋物線的對(duì)稱軸經(jīng)過EC中點(diǎn),若四邊形MENC是平行四邊形,那么M點(diǎn)必為拋物線頂點(diǎn);
則:M(4,);而平行四邊形的對(duì)角線互相平分,那么線段MN必被EC中點(diǎn)(4,3)平分,則N(4,);
②EC為平行四邊形的邊,則ECMN,設(shè)N(4,m),則M(4﹣8,m+6)或M(4+8,m﹣6);
將M(﹣4,m+6)代入拋物線的解析式中,得:m=﹣38,此時(shí) N(4,﹣38)、M(﹣4,﹣32);
將M(12,m﹣6)代入拋物線的解析式中,得:m=﹣26,此時(shí) N(4,﹣26)、M(12,﹣32);
綜上,存在符合條件的M、N點(diǎn),且它們的坐標(biāo)為:①M(fèi)1(﹣4,﹣32),N1(4,﹣38);②M2(12,﹣32),N2(4,﹣26);③M3(4,),N3(4,).
考點(diǎn):1.二次函數(shù)綜合題;2.動(dòng)點(diǎn)型;3.分類討論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
某工廠生產(chǎn)某品牌的護(hù)眼燈,并將護(hù)眼燈按質(zhì)量分成15個(gè)等級(jí)(等級(jí)越高,質(zhì)量越好.如:二級(jí)產(chǎn)品好于一級(jí)產(chǎn)品).若出售這批護(hù)眼燈,一級(jí)產(chǎn)品每臺(tái)可獲利21元,每提高一個(gè)等級(jí)每臺(tái)可多獲利潤(rùn)1元,工廠每天只能生產(chǎn)同一個(gè)等級(jí)的護(hù)眼燈,每個(gè)等級(jí)每天生產(chǎn)的臺(tái)數(shù)如下表表示:
等級(jí)(x級(jí)) | 一級(jí) | 二級(jí) | 三級(jí) | … |
生產(chǎn)量(y臺(tái)/天) | 78 | 76 | 74 | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線與軸交于點(diǎn)A(-1,0)、B(3,0),與軸交于點(diǎn)C(0,3).
(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)若P為線段BD上的一個(gè)動(dòng)點(diǎn),點(diǎn)P的橫坐標(biāo)為m,試用含m的代數(shù)式表示點(diǎn)P的縱坐標(biāo);
(3)過點(diǎn)P作PM⊥x軸于點(diǎn)M,求四邊形PMAC的面積的最大值和此時(shí)點(diǎn)P的坐標(biāo);
(4)若點(diǎn)F是第一象限拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)F作FQ∥AC交x軸于點(diǎn)Q.當(dāng)點(diǎn)F的坐標(biāo)為 時(shí),四邊形FQAC是平行四邊形;當(dāng)點(diǎn)F的坐標(biāo)為 時(shí),四邊形FQAC是等腰梯形(直接寫出結(jié)果,不寫求解過程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在梯形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,
∠DCB=30°.點(diǎn)E、F同時(shí)從B點(diǎn)出發(fā),沿射線BC向右勻速移動(dòng).已知F點(diǎn)移動(dòng)速度是E點(diǎn)移動(dòng)速度的2倍,以EF為一邊在CB的上方作等邊△EFG.設(shè)E點(diǎn)移動(dòng)距離為x(x>0).
⑴△EFG的邊長(zhǎng)是___________ (用含有x的代數(shù)式表示),當(dāng)x=2時(shí),點(diǎn)G的位置在_______;
⑵若△EFG與梯形ABCD重疊部分面積是y,求
①當(dāng)0<x≤2時(shí),y與x之間的函數(shù)關(guān)系式;
②當(dāng)2<x≤6時(shí),y與x之間的函數(shù)關(guān)系式;
⑶探求⑵中得到的函數(shù)y在x取含何值時(shí),存在最大值,并求出最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,一塊含60°角的三角板作如圖擺放,斜邊AB在x軸上,直角頂點(diǎn)C在y軸正半軸上,已知點(diǎn)A(-1,0).
(1)請(qǐng)直接寫出點(diǎn)B,C的坐標(biāo):B( , ),C( , );
(2)求經(jīng)過A,B,C三點(diǎn)的拋物線解析式;
(3)現(xiàn)有與上述三角板完全一樣的三角板DEF(其中∠EDF=90°,∠DEF=60°),把頂點(diǎn)E放在線段AB上(點(diǎn)E是不與A,B兩點(diǎn)重合的動(dòng)點(diǎn)),并使ED所在直線經(jīng)過點(diǎn)C.此時(shí),EF所在直線與(2)中的拋物線交于第一象限的點(diǎn)M.當(dāng)AE=2時(shí),拋物線的對(duì)稱軸上是否存在點(diǎn)P使△PEM是等腰三角形,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),四邊形OBHC為矩形,CH的延長(zhǎng)線交拋物線于點(diǎn)D(5,2),連結(jié)BC、AD.
(1)求C點(diǎn)的坐標(biāo)及拋物線的解析式;(6分)
(2)將△BCH繞點(diǎn)B按順時(shí)針旋轉(zhuǎn)90°后再沿x軸對(duì)折得到△BEF(點(diǎn)C與點(diǎn)E對(duì)應(yīng)),判斷點(diǎn)E是否落在拋物線上,并說明理由;(4分)
(3)設(shè)過點(diǎn)E的直線交AB邊于點(diǎn)P,交CD邊于點(diǎn)Q.問是否存在點(diǎn)P,使直線PQ分梯形ABCD的面積為1∶3兩部分?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由. (4分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
先閱讀以下材料,然后解答問題:
材料:將二次函數(shù)的圖象向左平移1個(gè)單位,再向下平移2個(gè)單位,求平移后的拋物線的解析式(平移后拋物線的形狀不變)。
解:在拋物線上任取兩點(diǎn)A(0,3)、B(1,4),由題意知:點(diǎn)A向左平移1個(gè)單位得到(,3),再向下平移2個(gè)單位得到(,1);點(diǎn)B向左平移1個(gè)單位得到(0,4),再向下平移2個(gè)單位得到(0,2)。
設(shè)平移后的拋物線的解析式為。
則點(diǎn)(,1),(0,2)在拋物線上。
可得:,解得:。
所以平移后的拋物線的解析式為:。
根據(jù)以上信息解答下列問題:
將直線向右平移3個(gè)單位,再向上平移1個(gè)單位,求平移后的直線的解析式。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com