【題目】如圖,在菱形ABCD中,∠ABC=60°,E是對角線AC上任意一點,F是線段BC延長線上一點,且CF=AE,連接BE、EF.
(1)如圖1,當E是線段AC的中點,且AB=2時,求△ABC的面積;
(2)如圖2,當點E不是線段AC的中點時,求證:BE=EF;
(3)如圖3,當點E是線段AC延長線上的任意一點時,(2)中的結論是否成立?若成立,請給予證明;若不成立,請說明理由.
【答案】(1)△ABC的面積=;(2)見解析;(3)成立,證明見解析.
【解析】
試題分析:(1)根據(jù)菱形的性質(zhì)證明△ABC是等邊三角形和AB=2,求出△ABC的面積;
(2)作EG∥BC交AB于G,證明△BGE≌△ECF,得到BE=EF;
(3)作EH∥BC交AB的延長線于H,證明△BHE≌△ECF,得到BE=EF.
解:(1)∵四邊形ABCD是菱形,∠ABC=60°,
∴△ABC是等邊三角形,又E是線段AC的中點,
∴BE⊥AC,AE=AB=1,
∴BE=,
∴△ABC的面積=×AC×BE=;
(2)如圖2,作EG∥BC交AB于G,
∵△ABC是等邊三角形,
∴△AGE是等邊三角形,
∴BG=CE,
∵EG∥BC,∠ABC=60°,
∴∠BGE=120°,
∵∠ACB=60°,
∴∠ECF=120°,
∴∠BGE=∠ECF,
在△BGE和△ECF中,
,
∴△BGE≌△ECF,
∴EB=EF;
(3)成立,
如圖3,作EH∥BC交AB的延長線于H,
∵△ABC是等邊三角形,
∴△AHE是等邊三角形,
∴BH=CE,
在△BHE和△ECF中,
,
∴△BHE≌△ECF,
∴EB=EF.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點P(2,5)與點Q關于x軸對稱,則點Q的坐標是( )
A.(﹣2,5)
B.(2,﹣5)
C.(﹣2,﹣5)
D.(5,2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列三角形一定不是直角三角形的是( )
A. 三角形的三邊長分別為5,12,13 B. 三角形的三個內(nèi)角比為1:2:3
C. 其中有兩個角互余 D. 三邊長的平方比為3:4:5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線的解析表達式為,且與軸交于點,直線經(jīng)過點,直線,交于點.
(1)求點的坐標;
(2)求直線的解析表達式;
(3)求的面積;
(4)在直線上存在異于點的另一點,使得與的面積相等,請直接寫出點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣4x+a,下列說法中正確的是 (填寫序號).
①當x<0時,y隨x的增大而減。
②若圖象與x軸有交點,則a≤4;
③若將圖象向上平移1個單位長度,再向左平移3個單位長度后過點(1,﹣2),則a=﹣3;
④當a=3時,不等式x2﹣4x+a>0的解集是1<x<3.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示是某一蓄水池每小時的排水量V(m3/h)與排完水池中的水所用的時間t(h)之間的函數(shù)關系圖象.
①請你根據(jù)圖象提供的信息求出此蓄水池的蓄水量;
②寫出此函數(shù)的解析式;
③若要6h排完水池中的水,那么每小時的排水量應該是多少?
④如果每小時排水量是5m3,那么水池中的水將要多少小時排完?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,若點P關于x軸的對稱點在第二象限,且到x軸的距離為2,到y(tǒng)軸的距離為3,則點P的坐標為( )
A.(﹣3,﹣2) B.(﹣2,﹣3) C.(2,3) D.(3,2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,奧運圣火抵達某市奧林匹克廣場后,沿圖中直角坐標系中的一段反比例函數(shù)圖象傳遞.動點 T ( m , n )表示火炬位置,火炬從離北京路10 m 處的 M 點開始傳遞,到離北京路1 000 m 的 N 點時傳遞活動結束.迎圣火臨時指揮部設在坐標原點 O (北京路與奧運路的十字路口), OATB 為少先隊員鮮花方陣,方陣始終保持矩形形狀且面積恒為10000 m 2 .(路線寬度均不計)
(1)、求圖中反比例函數(shù)的關系式(不需寫出自變量的取值范圍);
(2)、當鮮花方陣的周長為500 m 時,確定此時火炬的位置(用坐標表示);
(3)、設t=m-n ,用含 t 的代數(shù)式表示火炬到指揮部的距離;當火炬離指揮部最近時,確定此時火炬的位置(用坐標表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com