【題目】如圖矩形ABCD中,AD=1,CD= ,連接AC,將線段AC、AB分別繞點A順時針旋轉(zhuǎn)90°至AE、AF,線段AE與弧BF交于點G,連接CG,則圖中陰影部分面積為 .
【答案】 ﹣
【解析】解:在矩形ABCD中,
∵AD=1,CD= ,
∵AC=2,tan∠CAB= = ,
∴∠CAB=30°,
∵線段AC、AB分別繞點A順時針旋轉(zhuǎn)90°至AE、AF,
∴∠CAE=∠BAF=90°,
∴∠BAG=60°,
∵AG=AB= ,
∴陰影部分面積=S△ABC+S扇形ABG﹣S△ACG= × ×1+ ﹣ × ×2= ﹣ ,
所以答案是: ﹣ .
【考點精析】解答此題的關鍵在于理解矩形的性質(zhì)的相關知識,掌握矩形的四個角都是直角,矩形的對角線相等,以及對扇形面積計算公式的理解,了解在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=BC=4,AO=BO,P是射線CO上的一個動點,∠AOC=60°,則當△PAB為直角三角形時,AP的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD的∠BAD=∠C=90,AB=AD,AE⊥BC于E,旋轉(zhuǎn)后能與重合.
(1)旋轉(zhuǎn)中心是哪一點?
(2)旋轉(zhuǎn)了多少度?
(3)若AE=5㎝,求四邊形AECF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形OABC中,AO=10,AB=8,沿直線CD折疊矩形OABC的一邊BC,使點B落在OA邊上的點E處.分別以OC,OA所在的直線為x軸,y軸建立平面直角坐標系,拋物線y=ax2+bx+c經(jīng)過O,D,C三點.
(1)求AD的長及拋物線的解析式;
(2)一動點P從點E出發(fā),沿EC以每秒2個單位長的速度向點C運動,同時動點Q從點C出發(fā),沿CO以每秒1個單位長的速度向點O運動,當點P運動到點C時,兩點同時停止運動.設運動時間為t秒,當t為何值時,以P、Q、C為頂點的三角形與△ADE相似?
(3)點N在拋物線對稱軸上,點M在拋物線上,是否存在這樣的點M與點N,使以M,N,C,E為頂點的四邊形是平行四邊形?若存在,請直接寫出點M與點N的坐標(不寫求解過程);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AM∥BN,BC是∠ABN的平分線.
(1)過點A作AD⊥BC,垂足為O,AD與BN交于點D. (要求:用尺規(guī)作圖,并在圖中標明相應字母,保留作圖痕跡,不寫作法.)
(2)求證:AC=BD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某物流公司的快遞車和貨車同時從甲地出發(fā),以各自的速度勻速向乙地行駛,快遞車到達乙地后卸完物品再另裝貨物共用45分鐘,立即按原路以另一速度勻速返回,直至與貨車相遇.已知貨車的速度為60千米/時,兩車之間的距離y(千米)與貨車行駛時間x(小時)之間的函數(shù)圖象如圖所示,現(xiàn)有以下4個結論:
①快遞車從甲地到乙地的速度為100千米/時;②甲、乙兩地之間的距離為120千米;③圖中點B的坐標為(,75);④快遞車從乙地返回時的速度為90千米/時.以上4個結論中正確的是( )
A. ①③④ B. ①②④ C. ②③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,ABCD中,E、F分別是邊AB、CD的中點.
(1)求證:四邊形EBFD是平行四邊形;
(2)若AD=AE=2,∠A=60°,求四邊形EBFD的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,給出下列條件:①∠1=∠2;②∠3=∠4;③AD∥BC,且∠D=∠B;④AD∥BC,且∠BAD=∠BCD.其中,能推出AB∥DC的條件為( )
A.① B.② C.②③ D.②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com