【題目】A,B兩點(diǎn)在數(shù)軸上的位置如圖所示,其中O為原點(diǎn),點(diǎn)A對(duì)應(yīng)的有理數(shù)為﹣4,點(diǎn)B對(duì)應(yīng)的有理數(shù)為6.

(1)動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒2個(gè)單位長度的速度向右運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).

①當(dāng)t=1時(shí),AP的長為   ,點(diǎn)P表示的有理數(shù)為   ;

②當(dāng)PB=2時(shí),求t的值;

(2)如果動(dòng)點(diǎn)P以每秒6個(gè)單位長度的速度從O點(diǎn)向右運(yùn)動(dòng),點(diǎn)AB分別以每秒1個(gè)單位長度和每秒3個(gè)單位長度的速度向右運(yùn)動(dòng),且三點(diǎn)同時(shí)出發(fā),那么經(jīng)過幾秒PA=2PB.

【答案】(1)2,﹣2 t=6 (2)t=秒或16秒時(shí), PA=2PB

【解析】分析:(1)①根據(jù)路程=速度×時(shí)間,以及線段的和差定義計(jì)算即可;
②分兩種情形分別求解即可;
(2)分兩種情形:P在A、B之間或者P在B點(diǎn)右側(cè)的情況,分別構(gòu)建方程即可解決問題;

詳解(1)①∵動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒2個(gè)單位長度的速度向右運(yùn)動(dòng),

∴當(dāng)t=1時(shí),AP=2,

OA=4,

OP=2,

∴點(diǎn)P表示的有理數(shù)為﹣2.

②當(dāng)點(diǎn)PB左側(cè)時(shí),∵AB=10,PB=2,

AP=8,

t=4.

當(dāng)點(diǎn)P在點(diǎn)B右側(cè)時(shí),AP=12,

t=6;

(2)設(shè)一點(diǎn)時(shí)間為t秒;

①當(dāng)PA、B之間時(shí),PA=4+6t=4+5t,PB=6+3t﹣6t=6﹣3t,

PA=2PB,

4+5t=2(6﹣3t),

解得t=

②當(dāng)P點(diǎn)在B點(diǎn)右側(cè)時(shí),PA=4+5t,PB=3t﹣6,

PA=2PB,

4+5t=2(3t﹣6),

解得t=16,

故經(jīng)過秒或16秒時(shí),PA=2PB.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD及等邊△ABE.已知∠BAC=30°,EF⊥AB,垂足為F,連接DF

1)試說明AC=EF;

2)求證:四邊形ADFE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列生活現(xiàn)象中,屬于平移的是( 。

A.足球在草地上跳動(dòng)

B.急剎車時(shí)汽車在地面上滑行

C.投影片的文字經(jīng)投影轉(zhuǎn)換到屏幕上

D.鐘擺的擺動(dòng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算題。
(1)計(jì)算: .
(2)解不等式:4x+5≤2(x+1).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABBC,AE平分∠BADBC于點(diǎn)E,AEDE,1+2=90°,M,N分別是BA,CD延長線上的點(diǎn),∠EAM和∠EDN的平分線交于點(diǎn)F.下列結(jié)論:①ABCD;②∠AEB+ADC=180°;DE平分∠ADC;④∠F為定值其中結(jié)論正確的有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某學(xué)校在“國學(xué)經(jīng)典”中新建了一座吳玉章雕塑,小林站在距離雕塑3米的A處自B點(diǎn)看雕塑頭頂D的仰角為45°,看雕塑底部C的仰角為30°,求塑像CD的高度.(最后結(jié)果精確到0.1米,參考數(shù)據(jù): ≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠D=∠C=90°,EDC的中點(diǎn),AE平分∠DAB∠DEA=28°,則∠ABE的度數(shù)是( )

A. 62° B. 31° C. 28° D. 25°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將拋物線c1 沿x軸翻折,得到拋物線c2 , 如圖1所示.

(1)請(qǐng)直接寫出拋物線c2的表達(dá)式;
(2)現(xiàn)將拋物線c1向左平移m個(gè)單位長度,平移后得到新拋物線的頂點(diǎn)為M,與x軸的交點(diǎn)從左到右依次為A、B;將拋物線c2向右也平移m個(gè)單位長度,平移后得到新拋物線的頂點(diǎn)為N,與x軸的交點(diǎn)從左到右依次為D、E.
①當(dāng)B、D是線段AE的三等分點(diǎn)時(shí),求m的值;②在平移過程中,是否存在以點(diǎn)A、N、E、M為頂點(diǎn)的四邊形是矩形的情形?若存在,請(qǐng)求出此時(shí)m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)底面直徑為5 cm,高為18 cm的圓柱形瓶內(nèi)裝滿水,再將瓶內(nèi)的水倒入一個(gè)底面直徑為6cm,高為10cm的圓柱形玻璃中,能否完全裝下?若裝不下,那么瓶內(nèi)水面還有多高?若未能裝滿,求杯內(nèi)水面離杯口的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案