【題目】如圖,在平面直角坐標(biāo)系中,以為圓心作⊙,⊙軸交于、,與軸交于點(diǎn)為⊙上不同于的任意一點(diǎn),連接、,過(guò)點(diǎn)分別作,.設(shè)點(diǎn)的橫坐標(biāo)為,.當(dāng)點(diǎn)在⊙上順時(shí)針從點(diǎn)運(yùn)動(dòng)到點(diǎn)的過(guò)程中,下列圖象中能表示的函數(shù)關(guān)系的部分圖象是(

A.B.C.D.

【答案】A

【解析】

由題意,連接PC、EF,利用勾股定理求出,然后得到AB的長(zhǎng)度,由垂徑定理可得,點(diǎn)EAQ中點(diǎn),點(diǎn)FBQ的中點(diǎn),則EF是△QAB的中位線,即為定值,由,即可得到答案.

解:如圖,連接PC,EF,則

∵點(diǎn)P為(3,0),點(diǎn)C為(0,2),

,

∴半徑,

,,

∴點(diǎn)EAQ中點(diǎn),點(diǎn)FBQ的中點(diǎn),

EF是△QAB的中位線,

為定值;

AB為直徑,則∠AQB=90°,

∴四邊形PFQE是矩形,

,為定值;

∴當(dāng)點(diǎn)在上順時(shí)針從點(diǎn)運(yùn)動(dòng)到點(diǎn)的過(guò)程中,y的值不變;

故選:A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC和△ADE是有公共頂點(diǎn)的等腰直角三角形,∠BAC=∠DAE90°,點(diǎn)P為直線BD,CE的交點(diǎn).

1)如圖,將△ADE繞點(diǎn)A旋轉(zhuǎn),當(dāng)D在線段CE上時(shí),連接BE,下列給出兩個(gè)結(jié)論:BDCD+AD;BE22AD2+AB2).其中正確的是   ,并給出證明.

2)若AB4AD2,把△ADE繞點(diǎn)A旋轉(zhuǎn),

當(dāng)∠EAC90°時(shí),求PB的長(zhǎng);

旋轉(zhuǎn)過(guò)程中線段PB長(zhǎng)的最大值是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線軸于兩點(diǎn),交軸于點(diǎn),點(diǎn)的坐標(biāo)為,直線經(jīng)過(guò)點(diǎn).

1)求拋物線的函數(shù)表達(dá)式;

2)點(diǎn)是直線上方拋物線上的一動(dòng)點(diǎn),求面積的最大值并求出此時(shí)點(diǎn)的坐標(biāo);

3)過(guò)點(diǎn)的直線交直線于點(diǎn),連接當(dāng)直線與直線的一個(gè)夾角等于2倍時(shí),請(qǐng)直接寫出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,拋物線y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A(﹣1,0)和C03).(1)求拋物線的解析式;(2)在拋物線的對(duì)稱軸上,是否存在點(diǎn)P,使PA+PC的值最。咳绻嬖,請(qǐng)求出點(diǎn)P的坐標(biāo),如果不存在,請(qǐng)說(shuō)明理由;(3)設(shè)點(diǎn)M在拋物線的對(duì)稱軸上,當(dāng)△MAC是直角三角形時(shí),求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=BCDAC中點(diǎn),BE平分∠ABDAC于點(diǎn)E,點(diǎn)OAB上一點(diǎn),⊙O過(guò)B、E兩點(diǎn),交BD于點(diǎn)G,交AB于點(diǎn)F

1)判斷直線AC⊙O的位置關(guān)系,并說(shuō)明理由;

2)當(dāng)BD=6,AB=10時(shí),求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線軸交于點(diǎn),.

1)若,求的值;

2)過(guò)點(diǎn)作與軸平行的直線,交拋物線于點(diǎn).當(dāng)時(shí),求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB6BC3動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AC以每秒4個(gè)單位長(zhǎng)度的速度向終點(diǎn)C運(yùn)動(dòng).過(guò)點(diǎn)P(不與點(diǎn)A、C重合)作EFAC,交ABBC于點(diǎn)E,交ADDC于點(diǎn)F,以EF為邊向右作正方形EFGH設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.

1)①AC   .②當(dāng)點(diǎn)FAD上時(shí),用含t的代數(shù)式直接表示線段PF的長(zhǎng)   

2)當(dāng)點(diǎn)F與點(diǎn)D重合時(shí),求t的值.

3)設(shè)方形EFGH的周長(zhǎng)為l,求lt之間的函數(shù)關(guān)系式.

4)直接寫出對(duì)角線AC所在的直線將正方形EFGH分成兩部分圖形的面積比為12時(shí)t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】Rt中,∠A=90°,AC=4,將沿著斜邊BC翻折,點(diǎn)A落在點(diǎn)處,點(diǎn)D、E分別為邊ACBC的中點(diǎn),聯(lián)結(jié)DE并延長(zhǎng)交所在直線于點(diǎn)F,聯(lián)結(jié),如果為直角三角形時(shí),那么____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn),點(diǎn).

1)求直線的函數(shù)表達(dá)式;

2)點(diǎn)是線段上的一點(diǎn),當(dāng)時(shí),求點(diǎn)的坐標(biāo);

3)如圖2,在(2)的條件下,將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn),點(diǎn)落在點(diǎn)處,連結(jié),求的面積,并直接寫出點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案