【題目】如圖,已知函數(shù)的圖像在第一象限交于點(diǎn)Am,y1),點(diǎn)Bm+1,y2)在的圖像上,且點(diǎn)B在以O 點(diǎn)為圓心,OA為半徑的⊙O上,則k的值為( ).

A. B. 1 C. D. 2

【答案】A

【解析】

By=的圖像上可知y2=,由y=3xy=圖像交于A點(diǎn)可知y1=3m= ,進(jìn)而可得k=3m2,根據(jù)點(diǎn)B在以O 點(diǎn)為圓心,OA為半徑的⊙O上可知OA=OB,利用A、B的坐標(biāo)求出OA、OB的長(zhǎng),列方程即可求出m的值,進(jìn)而求出k的值即可.

y=3xy=圖像交于A點(diǎn),點(diǎn)A(m,y1),

y1=3m=

k=3m2,

By=的圖像上,點(diǎn)B(m+1,y2

y2=

B在以O 點(diǎn)為圓心,OA為半徑的⊙O,

OA=OB,

m2+(3m)2=(m+1)2+

解得:m1=,m2=,m3= ,

A點(diǎn)在第一象限,

m=,

k=3m2=.

故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)F,C是⊙O上兩點(diǎn),且連接AC,AF,過點(diǎn)CCDAFAF延長(zhǎng)線于點(diǎn)D,垂足為D.

(1)求證:CD是⊙O的切線;

(2)CD=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)的邊的延長(zhǎng)線上一點(diǎn),點(diǎn)是邊上的一點(diǎn)(不與點(diǎn)重合).以、為鄰邊作平行四邊形,又(點(diǎn)在直線的同側(cè)),如果,那么的面積與面積的比值為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 與X軸交于點(diǎn)A、B,把拋物線在X軸及其下方的部分記作,將向左平移得到,與X軸交于點(diǎn)B、D,若直線、共有3個(gè)不同的交點(diǎn),則m取值范圍是( )

A. <m< B. <m< C. <m< D. <m<

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)D是⊙O上一點(diǎn),直線AE經(jīng)過點(diǎn)D,直線AB經(jīng)過圓心O,交⊙O于B,C兩點(diǎn),CE⊥AE,垂足為點(diǎn)E,交⊙O于點(diǎn)F,∠BCD=∠DCF

(1)求∠A+∠BOD的度數(shù);

(2)若sin∠DCE=,⊙O的半徑為5,求線段AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】高空拋物極其危險(xiǎn),是我們必須杜絕的行為.據(jù)研究,高空拋物下落的時(shí)間t(單位:s)和高度 h(單位:m)近似滿足公式 t=(不考慮風(fēng)速的影響)

(1) 50m 高空拋物到落地所需時(shí)間 t1 是多少 s, 100m 高空拋物到落地所 需時(shí)間 t2 是多少 s;

(2)t2 t1 的多少倍?

(3)經(jīng)過 1.5s,高空拋物下落的高度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB⊙O的直徑,AD,BD⊙O的弦,BC⊙O的切線,切點(diǎn)為B,OC∥AD,BA,CD的延長(zhǎng)線相交于點(diǎn)E.

(1)求證:DC⊙O的切線;

(2)若⊙O半徑為4,∠OCE=30°,求△OCE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠ACB90°,AC3BC4,DAB上一動(dòng)點(diǎn),過點(diǎn)DDEAC于點(diǎn)E,DFBC于點(diǎn)F,連結(jié)EF,則線段EF的長(zhǎng)的最小值是(  )

A.2.5B.2.4C.2.2D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖1,線段AB、CD相交于點(diǎn)O,連接ADCB,如圖2,在圖1的條件下,∠DAB和∠BCD的平分線APCP相交于點(diǎn)P,并且與CD、AB分別相交于MN,試解答下列問題:

(1)在圖1中,請(qǐng)直接寫出∠A、∠B、∠C、∠D之間的數(shù)量關(guān)系:_____________________;

(2)在圖2中,若∠D=40°,∠B=30°,試求∠P的度數(shù)(寫出解答過程);

(3)如果圖2中,∠D和∠B為任意角,其他條件不變,試寫出∠P與∠D、∠B之間的數(shù)量關(guān)系(直接寫出結(jié)論即可).

查看答案和解析>>

同步練習(xí)冊(cè)答案