【題目】如圖,點(diǎn)D在 的邊AC上,要判斷 與 相似,添加一個(gè)條件,不正確的是( )
A.
B.
C.
D.
【答案】C
【解析】A.根據(jù)相似三角形的判定:兩個(gè)角相等的兩個(gè)三角形相似即可得出正確;A不符合題意;
B.根據(jù)相似三角形的判定:兩個(gè)角相等的兩個(gè)三角形相似即可得出正確;B不符合題意;
C.根據(jù)相似三角形的判定:兩邊對(duì)應(yīng)成比例及夾角相等的兩個(gè)三角形相似即可得出錯(cuò)誤;C符合題意;
D.根據(jù)相似三角形的判定:兩邊對(duì)應(yīng)成比例及夾角相等的兩個(gè)三角形相似即可得出正確;D不符合題意;
所以答案是:C
【考點(diǎn)精析】關(guān)于本題考查的相似三角形的判定,需要了解相似三角形的判定方法:兩角對(duì)應(yīng)相等,兩三角形相似(ASA);直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似; 兩邊對(duì)應(yīng)成比例且夾角相等,兩三角形相似(SAS);三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把一張長(zhǎng)方形紙片ABCD沿EF折疊后,ED與BC交點(diǎn)為G,D、C分別在M、N的位置上,若∠2-∠1=40°,則∠EFC的度數(shù)為( )
A. 115°B. 125°C. 135°D. 145°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四張編號(hào)為A,B,C,D的卡片(除編號(hào)外,其余完全相同)的正面分別寫上如圖所示的正整數(shù)后,背面向上,洗勻放好.
(1)我們知道,滿足a2+b2=c2的三個(gè)正整數(shù)a,b,c成為勾股數(shù),嘉嘉從中隨機(jī)抽取一張,求抽到的卡片上的數(shù)是勾股數(shù)的概率P1;
(2)琪琪從中隨機(jī)抽取一張(不放回),再?gòu)氖O碌目ㄆ须S機(jī)抽取一張(卡片用A,B,C,D表示).請(qǐng)用列表或畫樹形圖的方法求抽到的兩張卡片上的數(shù)都是勾股數(shù)的概率P2 , 并指出她與嘉嘉抽到勾股數(shù)的可能性一樣嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB、CD、EF相交于點(diǎn)O,OG⊥CD,∠BOD=32°.
(1)求∠AOG的度數(shù);
(2)如果OC是∠AOE的平分線,那么OG是∠AOF的平分線嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在銳角三角形ABC中,點(diǎn)D,E分別在邊AC,AB上,AG⊥BC于點(diǎn)G,AF⊥DE于點(diǎn)F,∠EAF=∠GAC.
(1)求證:△ADE∽△ABC;
(2)若AD=3,AB=5,求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC與△A′B′C′中,有下列條件:(1) ,(2) ;(3)∠A=∠A′;(4)∠C=∠C′,如果從中任取兩個(gè)條件組成一組,那么能判斷△ABC∽△A′B′C′的共有( )
A.1組
B.2組
C.3組
D.4組
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】按要求解答下列各題:
(1)化簡(jiǎn):;
(2)解分式方程:;
(3)已知關(guān)于x的方程有一個(gè)正數(shù)解,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D是邊AB的四等分點(diǎn),DE∥AC,DF∥BC,AC=8,BC=12,求四邊形DECF的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】完成下面的證明
如圖,FG//CD,∠1=∠3,∠B=50°,求∠BDE的度數(shù).
解:∵FG//CD (已知)
∴∠2=_________(____________________________)
又∵∠1=∠3,
∴∠3=∠2(等量代換)
∴BC//__________(_____________________________)
∴∠B+________=180°(______________________________)
又∵∠B=50°
∴∠BDE=________________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com