【題目】如圖,已知直線分別交軸、軸于、兩點(diǎn),拋物線經(jīng)過、兩點(diǎn),點(diǎn)是拋物線與軸的另一個(gè)交點(diǎn)(與點(diǎn)不重合).
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上求一點(diǎn),使的周長最小,并求出最小周長和點(diǎn)的坐標(biāo);
(3)在拋物線的對稱軸上,是否存在點(diǎn)M,使為等腰三角形?若不存在,請說明理由;若存在,求出點(diǎn)M的坐標(biāo).
【答案】(1) ;(2) ;(3)存在,,,,.
【解析】
(1)由直線解析式可求得A、B兩點(diǎn)的坐標(biāo),根據(jù)待定系數(shù)法可求得拋物線解析式;
(2)連接BC,直線BC與對稱軸的交點(diǎn)即為點(diǎn)P.求出直線BC的解析式,求出點(diǎn)P的坐標(biāo),即可求解.
(3)分MA=AB,MB=AB,MB=MA三種情況進(jìn)行討論.
解:(1)直線
,
把A,B兩點(diǎn)的坐標(biāo)分別代入得:
∴拋物線的解析式為
(2)連接BC,直線BC與對稱軸的交點(diǎn)即為點(diǎn)P.易求直線BC的解析式為,拋物線對稱軸為直線,當(dāng)P(-1,-2)時(shí)最小周長為.
(3)存在,理由如下:
拋物線的對稱軸為::
①當(dāng)MA=AB時(shí),∵OA=1,OB=3
,
②當(dāng)MB=AB時(shí), (不合題意)
,
③當(dāng)MB=MA時(shí),
,
故共存在四個(gè)點(diǎn)
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某課桌生產(chǎn)廠家研究發(fā)現(xiàn),傾斜12°~24°的桌面有利于學(xué)生保持軀體自然姿勢.根據(jù)這一研究,廠家決定將水平桌面做成可調(diào)節(jié)角度的桌面.新桌面的設(shè)計(jì)圖如圖1,AB可繞點(diǎn)A旋轉(zhuǎn),在點(diǎn)C處安裝一根可旋轉(zhuǎn)的支撐臂CD,AC=30 cm.
(1)如圖2,當(dāng)∠BAC=24°時(shí),CD⊥AB,求支撐臂CD的長;
(2)如圖3,當(dāng)∠BAC=12°時(shí),求AD的長.(結(jié)果保留根號(hào))
(參考數(shù)據(jù):sin 24°≈0.40,cos 24°≈0.91,tan 24°≈0.46,sin 12°≈0.20)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于點(diǎn)A和B(3,0),與y軸交于點(diǎn)C(0,3).
(1)求拋物線的解析式;
(2)若點(diǎn)M是拋物線上在x軸下方的動(dòng)點(diǎn),過M作MN∥y軸交直線BC于點(diǎn)N,求線段MN的最大值;
(3)E是拋物線對稱軸上一點(diǎn),F是拋物線上一點(diǎn),是否存在以A,B,E,F為頂點(diǎn)的四邊形是平行四邊形?若存在,請直接寫出點(diǎn)F的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知A(2,0)、B(3,1)、C(1,3).
(1)將△ABC沿x軸負(fù)方向移動(dòng)2個(gè)單位長度至△A1B1C1,畫圖并寫出點(diǎn)C1的坐標(biāo);
(2)以點(diǎn)A1為旋轉(zhuǎn)中心,將△A1B1C1逆時(shí)針方向旋轉(zhuǎn)90°得到△A2B2C2,畫圖并寫出點(diǎn)C2的坐標(biāo);
(3)以B、C1、C2為頂點(diǎn)的三角形是 三角形,其外接圓的半徑R= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B為定點(diǎn),定直線l//AB,P是l上一動(dòng)點(diǎn).點(diǎn)M,N分別為PA,PB的中點(diǎn),對于下列各值:
①線段MN的長;
②△PAB的周長;
③△PMN的面積;
④直線MN,AB之間的距離;
⑤∠APB的大。
其中會(huì)隨點(diǎn)P的移動(dòng)而變化的是( )
A. ②③ B. ②⑤ C. ①③④ D. ④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為滿足市場需求,某超市在五月初五“端午節(jié)”來臨前夕,購進(jìn)一種品牌粽子,每盒進(jìn)價(jià)是40元.超市規(guī)定每盒售價(jià)不得少于45元.根據(jù)以往銷售經(jīng)驗(yàn)發(fā)現(xiàn);當(dāng)售價(jià)定為每盒45元時(shí),每天可以賣出700盒,每盒售價(jià)每提高1元,每天要少賣出20盒.
(1)試求出每天的銷售量y(盒)與每盒售價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)當(dāng)每盒售價(jià)定為多少元時(shí),每天銷售的利潤P(元)最大?最大利潤是多少?
(3)為穩(wěn)定物價(jià),有關(guān)管理部門限定:這種粽子的每盒售價(jià)不得高于58元.如果超市想要每天獲得不低于6000元的利潤,那么超市每天至少銷售粽子多少盒?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為滿足市場需求,某超市在五月初五“端午節(jié)”來臨前夕,購進(jìn)一種品牌粽子,每盒進(jìn)價(jià)是40元.超市規(guī)定每盒售價(jià)不得少于45元.根據(jù)以往銷售經(jīng)驗(yàn)發(fā)現(xiàn);當(dāng)售價(jià)定為每盒45元時(shí),每天可以賣出700盒,每盒售價(jià)每提高1元,每天要少賣出20盒.
(1)試求出每天的銷售量y(盒)與每盒售價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)當(dāng)每盒售價(jià)定為多少元時(shí),每天銷售的利潤P(元)最大?最大利潤是多少?
(3)為穩(wěn)定物價(jià),有關(guān)管理部門限定:這種粽子的每盒售價(jià)不得高于58元.如果超市想要每天獲得不低于6000元的利潤,那么超市每天至少銷售粽子多少盒?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(6分)某海域有A,B兩個(gè)港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船從A港口出發(fā),沿東北方向行駛一段距離后,到達(dá)位于B港口南偏東75°方向的C處,求該船與B港口之間的距離即CB的長(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A(1,0)、C(﹣2,3)兩點(diǎn),與y軸交于點(diǎn)N,其頂點(diǎn)為D.
(1)求拋物線及直線AC的函數(shù)關(guān)系式;
(2)若P是拋物線上位于直線AC上方的一個(gè)動(dòng)點(diǎn),求△APC的面積的最大值及此時(shí)點(diǎn)P的坐標(biāo);
(3)在對稱軸上是否存在一點(diǎn)M,使△ANM的周長最。舸嬖冢埱蟪M點(diǎn)的坐標(biāo)和△ANM周長的最小值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com