【題目】如圖,方格紙中的每個小方格都是邊長為1個單位長度的正方形,每個小正方形的頂點叫格點,△ABC△DEF的頂點都在格點上,結(jié)合所給的平面直角坐標(biāo)系解答下列問題:

1)畫出△ABC向上平移4個單位長度后所得到的△A1B1C1;

2)畫出△DEF繞點O按順時針方向旋轉(zhuǎn)90°后所得到的△D1E1F1;

3△A1B1C1△D1E1F1組成的圖形是軸對稱圖形嗎?如果是,請直接寫出對稱軸所在直線的解析式.

【答案】1)作圖見解析;(2)作圖見解析;(3)是,y=x

【解析】

試題(1)根據(jù)平移變換點的坐標(biāo)的變化規(guī)律在網(wǎng)格中確定出點A1B1、C1位置順次連接即可;

2)根據(jù)旋轉(zhuǎn)的性質(zhì)在網(wǎng)格中確定出點D1、E1、F1位置順次連接即可;

3)根據(jù)軸對稱圖形的概念確定對稱軸,然后再求對稱軸所在直線的解析式.

試題解析:(1)見下圖;(2)見下圖;△A1B1C1△D1E1F1組成的圖形是軸對稱圖形,對稱軸為直線y=x和直線y=-x-2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,邊長為2的正方形ABCD位于第二象限,且ABx軸,點B在點C的正下方,雙曲線yx0)經(jīng)過點C

1m的取值范圍是   ;

2)若點B(﹣1,1),判斷雙曲線是否經(jīng)過點A;

3)設(shè)點Ba,2a+1).

①若雙曲線經(jīng)過點A,求a的值;

②若直線y2x+2AB于點E,雙曲線與線段AE有交點,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】連擲兩次骰子,它們的點數(shù)都是4的概率是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABAC,CDBE分別是△ABC的角平分線,AGBCAGBG,下列結(jié)論:①∠BAG2ABF;②BA平分∠CBG;③∠ABG=∠ACB;④∠CFB135°,其中正確的結(jié)論有(  )個

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,BC是⊙O的切線,連接AC與⊙O交于點 D.取BC的中點E,連接DE,并連接OE交⊙O于點F.連接AFBC于點G,連接BDAG于點H

1)若EF1,BE,求∠EOB的度數(shù);

2)求證:DE為⊙O的切線;

3)求證:點F為線段HG的中點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線yx+3x軸交于點A,與y軸交于點B,拋物線y=﹣x2+bx+c經(jīng)過A、B兩點,與x軸交于另一個點C,對稱軸與直線AB交于點E,拋物線頂點為D

1)點A的坐標(biāo)為   ,點B的坐標(biāo)為   

2)①求拋物線的解析式;

②直線AB與拋物線的對稱軸交于點E,在x軸上是否存在點M,使得ME+MB最小,求出點M的坐標(biāo).

3)點P從點D出發(fā),沿對稱軸向下以每秒1個單位長度的速度勻速運動,設(shè)運動的時間為t秒,當(dāng)t為何值時,以P、B、C為頂點的三角形是等腰三角形?直接寫出所有符合條件的t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以等腰ABC的一腰AC為直徑作⊙O,交底邊BC于點D,過點D作腰AB的垂線,垂足為E,交AC的延長線于點F

1)求證:EF是⊙O的切線;

2)證明:∠CAD=∠CDF;

3)若∠F30°,AD,求⊙O的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017年5月14日15日,“一帶一路”國際合作高峰壇在北京行,本屆壇期間,中國同30多個國家簽署經(jīng)貿(mào)合作協(xié)議,某廠準(zhǔn)備生產(chǎn)甲、乙兩種商品共8萬件銷“一帶一路”沿線國家和地區(qū),已知2件甲種商品與3件乙種商品的銷售收入相同,3件甲種商品比2件乙種商品的銷售收入1500元.

(1)甲商品與乙種商品的銷售單價各多少元?

(2)若甲、乙兩種商品的銷售總收入不低于5400萬元,則至少銷售甲種商品多少萬件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c經(jīng)過點A(3,0),點C(0,3),點D為二次函數(shù)的頂點,DE為二次函數(shù)的對稱軸,點Ex軸上.

1)求拋物線的解析式及頂點D的坐標(biāo);

2)在拋物線AC兩點之間有一點F,使FAC的面積最大,求F點坐標(biāo);

3)直線DE上是否存在點P到直線AD的距離與到x軸的距離相等?若存在,請求出點P,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案