分析 (1)根據(jù)勾股定理求出BD,得到DE的長(zhǎng),根據(jù)相似三角形的性質(zhì)得到比例式,代入計(jì)算即可求出DF的長(zhǎng),求出CF的長(zhǎng)度;
(2)利用相似三角形的面積比等于相似比的平方即可求出答案.
解答 解:(1)∵四邊形ABCD是矩形,
∴∠BAD=90°,又AB=$\sqrt{3}$,BC=$\sqrt{6}$,
∴BD=$\sqrt{A{B}^{2}+A{D}^{2}}$=3,
∵BE=1.8,
∴DE=3-1.8=1.2,
∵AB∥CD,
∴$\frac{DF}{AB}$=$\frac{DE}{BE}$,即$\frac{DF}{\sqrt{3}}$=$\frac{1.2}{1.8}$,
解得,DF=$\frac{2\sqrt{3}}{3}$,
則CF=CD-DF=$\sqrt{3}$-$\frac{2\sqrt{3}}{3}$=$\frac{\sqrt{3}}{3}$;
(2)∵AB∥CD,
∴△DEF∽△BEA,
∴$\frac{{S}_{△DEF}}{{S}_{△BEA}}$=($\frac{DF}{AB}$)2=($\frac{\frac{2\sqrt{3}}{3}}{\sqrt{3}}$)2=$\frac{4}{9}$.
點(diǎn)評(píng) 本題考查的是矩形的性質(zhì)、相似三角形的判定和性質(zhì),掌握矩形的性質(zhì)定理和相似三角形的判定定理、性質(zhì)定理是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1:3 | B. | 1:4 | C. | 1:5 | D. | 1:6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | -2 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2{x}^{2}}$ | B. | $\sqrt{5}$ | C. | $\sqrt{8}$ | D. | $\sqrt{\frac{1}{x}}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com