【題目】如圖,在△ABC中,∠C=90°,∠ABC的平分線BE交AC于點(diǎn)E,過點(diǎn)E作直線BE的垂線交AB于點(diǎn)F,⊙O是△BEF的外接圓.

(1)求證:AC是⊙O的切線;

(2)過點(diǎn)E作EH⊥AB于點(diǎn)H,求證:EF平分∠AEH;

(3)求證:CD=HF.

【答案】詳見解析.

【解析】

(1)連接OE,由于BE是角平分線,則有∠CBE=OBE;而OB=OE,就有∠OBE=OEB,等量代換有∠OEB=CBE,那么利用內(nèi)錯(cuò)角相等,兩直線平行,可得OEBC;又∠C=90°,所以∠AEO=90°,即AC是⊙O的切線;

(2)C=BHE=90°,EBC=EBA,BEC=BEH,根據(jù)BF是⊙O是直徑,

得到∠BEF=90°,FEH+BEH=90°,AEF+BEC=90°,得到∠FEH=FEA,

即可證明FE平分∠AEH.
(3)連結(jié)DE,先根據(jù)AAS證明CDE≌△HFE,再由全等三角形的對(duì)應(yīng)邊相等即可得出CD=HF.

(1)證明:(1)如圖,連接OE.

BEEF,∴∠BEF=90°,

BF是圓O的直徑,

OB=OE,

∴∠OBE=OEB,

BE平分∠ABC,

∴∠CBE=OBE,

∴∠OEB=CBE,

OEBC,

∴∠AEO=C=90°,

AC是⊙O的切線;

(2)證明:∵∠C=BHE=90°,EBC=EBA,

∴∠BEC=BEH,

BF是⊙O是直徑,

∴∠BEF=90°,

∴∠FEH+BEH=90°,AEF+BEC=90°,

∴∠FEH=FEA,

FE平分∠AEH.

(3)證明:如圖,連結(jié)DE.

BE是∠ABC的平分線,ECBCC,EHABH,

EC=EH.

∵∠CDE+BDE=180°,HFE+BDE=180°,

∴∠CDE=HFE,

∵∠C=EHF=90°,

∴△CDE≌△HFE(AAS),

CD=HF,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰直角ACB中,∠ACB=90°,O是斜邊AB的中點(diǎn),點(diǎn)D、E分別在直角邊ACBC上,且∠DOE=90°DEOC于點(diǎn)P,則下列結(jié)論

(1) AOD≌△COE;(2) OE=OD;(3) EOP∽△CDP.

其中正確的結(jié)論是(  )

A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊長為20cm,∠ABC120°.動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)A出發(fā),其中P4cm/s的速度,沿ABC的路線向點(diǎn)C運(yùn)動(dòng);Q2cm/s的速度,沿AC的路線向點(diǎn)C運(yùn)動(dòng).當(dāng)P、Q到達(dá)終點(diǎn)C時(shí),整個(gè)運(yùn)動(dòng)隨之結(jié)束,設(shè)運(yùn)動(dòng)時(shí)間為t秒.

1)在點(diǎn)PQ運(yùn)動(dòng)過程中,請(qǐng)判斷PQ與對(duì)角線AC的位置關(guān)系,并說明理由;

2)若點(diǎn)Q關(guān)于菱形ABCD的對(duì)角線交點(diǎn)O的對(duì)稱點(diǎn)為M,過點(diǎn)P且垂直于AB的直線l交菱形ABCD的邊AD(或CD)于點(diǎn)N

①當(dāng)t為何值時(shí),點(diǎn)PMN在一直線上?

②當(dāng)點(diǎn)P、M、N不在一直線上時(shí),是否存在這樣的t,使得PMN是以PN為一直角邊的直角三角形?若存在,請(qǐng)求出所有符合條件的t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a0)的圖象如圖所示,下列結(jié)論:①2a+b0;abc0;b2﹣4ac0;a+b+c0;(a﹣2b+c)0,其中正確的個(gè)數(shù)是(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB和拋物線的交點(diǎn)是A(0,-3),B(5,9),已知拋物線的頂點(diǎn)D的橫坐標(biāo)是2.

(1)求拋物線的解析式及頂點(diǎn)坐標(biāo);

(2)軸上是否存在一點(diǎn)C,與A,B組成等腰三角形?若存在,求出點(diǎn)C的坐標(biāo),若不存在,請(qǐng)說明理由;

(3)在直線AB的下方拋物線上找一點(diǎn)P,連接PA,PB使得△PAB的面積最大,并求出這個(gè)最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣3,頂點(diǎn)為E,該拋物線與x軸交于A,B兩點(diǎn),與y軸交子點(diǎn)C,且OB=OC=3OA,直線y=﹣x+1與y軸交于點(diǎn)D.求∠DBC﹣∠CBE=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一個(gè)模型的三視圖如圖所示(單位:m)

(1)請(qǐng)描述這個(gè)模型的形狀;

(2)若制作這個(gè)模型的木料密度為360 kg/m3,則這個(gè)模型的質(zhì)量是多少?

(3)如果用油漆漆這個(gè)模型,每千克油漆可以漆4 m2,那么需要多少千克油漆?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道:x26x(x26x+9)9(x3)29;﹣x2+10=﹣(x210x+25)+25=﹣(x5)2+25,這一種方法稱為配方法,利用配方法請(qǐng)解以下各題:

(1)按上面材料提示的方法填空:a24a      .﹣a2+12a      

(2)探究:當(dāng)a取不同的實(shí)數(shù)時(shí)在得到的代數(shù)式a24a的值中是否存在最小值?請(qǐng)說明理由.

(3)應(yīng)用:如圖.已知線段AB6,MAB上的一個(gè)動(dòng)點(diǎn),設(shè)AMx,以AM為一邊作正方形AMND,再以MB、MN為一組鄰邊作長方形MBCN.問:當(dāng)點(diǎn)MAB上運(yùn)動(dòng)時(shí),長方形MBCN的面積是否存在最大值?若存在,請(qǐng)求出這個(gè)最大值;否則請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在現(xiàn)今互聯(lián)網(wǎng)+”的時(shí)代,密碼與我們的生活已經(jīng)緊密相連,密不可分,而諸如“123456”、生日等簡單密碼又容易被破解,因此利用簡單方法產(chǎn)生一組容易記憶的密碼就很有必要了,有一種用因式分解法產(chǎn)生的密碼、方便記憶,其原理是:將一個(gè)多項(xiàng)式分解因式,如多項(xiàng)式:因式分解的結(jié)果為,當(dāng)時(shí),此時(shí)可以得到數(shù)字密碼171920.

(1)根據(jù)上述方法,當(dāng)時(shí),對(duì)于多項(xiàng)式分解因式后可以形成哪些數(shù)字密碼?(寫出三個(gè))

(2)若一個(gè)直角三角形的周長是24,斜邊長為10,其中兩條直角邊分別為xy,求出一個(gè)由多項(xiàng)式分解因式后得到的密碼(只需一個(gè)即可);

(3)若多項(xiàng)式因式分解后,利用本題的方法,當(dāng)時(shí)可以得到其中一個(gè)密碼為242834,m、n的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案