【題目】如圖,在銳角△ABC中,AC是最短邊.以AC為直徑的⊙O,交BC于D,過O作OE∥BC,交OD于E,連接AD、AE、CE.
(1)求證:∠ACE=∠DCE;
(2)若∠B=45°,∠BAE=15°,求∠EAO的度數(shù);
(3)若AC=4,,求CF的長.
【答案】(1)證明見解析,(2)60°;(3)
【解析】
(1)易證∠OEC=∠OCE,∠OEC=∠ECD,從而可知∠OCE=∠ECD,即∠ACE=∠DCE;
(2)延長AE交BC于點(diǎn)G,易證∠AGC=∠B+∠BAG=60°,由于OE∥BC,所以∠AEO=∠AGC=60°,所以∠EAO=∠AEO=60°;
(3)易證,由于,所以=,由圓周角定理可知∠AEC=∠FDC=90°,從而可證明△CDF∽△CEA,利用三角形相似的性質(zhì)即可求出答案.
(1)∵OC=OE,∴∠OEC=∠OCE.
∵OE∥BC,∴∠OEC=∠ECD,∴∠OCE=∠ECD,即∠ACE=∠DCE;
(2)延長AE交BC于點(diǎn)G.
∵∠AGC是△ABG的外角,∴∠AGC=∠B+∠BAG=60°.
∵OE∥BC,∴∠AEO=∠AGC=60°.
∵OA=OE,∴∠EAO=∠AEO=60°.
(3)∵O是AC中點(diǎn),∴
,∴=.
∵AC是直徑,∴∠AEC=∠FDC=90°.
∵∠ACE=∠FCD,∴△CDF∽△CEA,∴=,∴CF=CA=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E在線段BC上,AB⊥BC,DC⊥BC,∠AED=90°,且AE=DE.
(1)求證:△ABE≌△ECD.
(2)直接寫出線段AB、BC、CD之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)P是線段AD上一動(dòng)點(diǎn),O為BD的中點(diǎn),PO的延長線交BC于點(diǎn)Q。
(1)求證:OP=OQ;
(2)若AD=8cm,AB=6cm,P從點(diǎn)A出發(fā),以1cm/秒的速度向點(diǎn)D運(yùn)動(dòng)(不與點(diǎn)D重合),設(shè)點(diǎn)P運(yùn)動(dòng)時(shí)間為t秒,請(qǐng)用t表示PD的長;并求當(dāng)t為何值時(shí),四邊形PBQD是菱形。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O中,AB是⊙O的直徑,G為弦AE的中點(diǎn),連接OG并延長交⊙O于點(diǎn)D,連接BD交AE于點(diǎn)F,延長AE至點(diǎn)C,使得FC=BC,連接BC.
(1)求證:BC是⊙O的切線;
(2)⊙O的半徑為5,tanA=,求FD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,E為AC上一點(diǎn),且AE=BC,過點(diǎn)A作AD⊥CA,垂足為A,且AD=AC,AB、DE交于點(diǎn)F.試判斷線段AB與DE的數(shù)量關(guān)系和位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將直線y=x向下平移b個(gè)單位長度后得到直線l,l與反比例函數(shù)y=(k>0,x>0)的圖象相交于點(diǎn)A,與x軸相交于點(diǎn)B,則OA2﹣OB2=10,則k的值是( 。
A. 5 B. 10 C. 15 D. 20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B兩輛汽車同時(shí)從相距330千米的甲、乙兩地相向而行,s(千米)表示汽車與甲地的距離,t(分)表示汽車行駛的時(shí)間,如圖,L1,L2分別表示兩輛汽車的s與t的關(guān)系.
(1)L1表示哪輛汽車到甲地的距離與行駛時(shí)間的關(guān)系?
(2)汽車B的速度是多少?
(3)求L1,L2分別表示的兩輛汽車的s與t的關(guān)系式.
(4)2小時(shí)后,兩車相距多少千米?
(5)行駛多長時(shí)間后,A、B兩車相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線OD與x軸所夾的銳角為30°,OA1的長為2,△A1A2B1、△A2A3B2、△A3A4B3…△AnAn+1Bn均為等邊三邊形,點(diǎn)A1、A2、A3…An﹣1在x軸正半軸上依次排列,點(diǎn)B1、B2、B3…Bn在直線OD上依次排列,那么點(diǎn)B2的坐標(biāo)為____,點(diǎn)Bn的坐標(biāo)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,分別以AC、BC為邊作等邊三角形ACD和等邊三角形BCE,連接AE、BD交于點(diǎn)O.
(1)求證:△ACE≌△DCB;
(2)求∠AOB的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com