【題目】如圖,在△BCE中,點(diǎn)A時(shí)邊BE上一點(diǎn),以AB為直徑的⊙O與CE相切于點(diǎn)D,AD∥OC,點(diǎn)F為OC與⊙O的交點(diǎn),連接AF.
(1)求證:CB是⊙O的切線(xiàn);
(2)若∠ECB=60°,AB=6,求圖中陰影部分的面積.
【答案】(1)詳見(jiàn)解析;(2).
【解析】
試題分析:(1)根據(jù)已知條件易證△CDO≌△CBO,即可得∠CBO=∠CDO=90°,所以CB是⊙O的切線(xiàn);(2)根據(jù)條件證明△ADG≌△FOG,可得S△ADG=S△FOG,再由S陰=S扇形ODF,利用扇形面積公式計(jì)算即可.
試題解析:(1)證明:連接OD,與AF相交于點(diǎn)G,
∵CE與⊙O相切于點(diǎn)D,
∴OD⊥CE,
∴∠CDO=90°,
∵AD∥OC,
∴∠ADO=∠1,∠DAO=∠2,
∵OA=OD,
∴∠ADO=∠DAO,
∴∠1=∠2,
在△CDO和△CBO中,
,
∴△CDO≌△CBO,
∴∠CBO=∠CDO=90°,
∴CB是⊙O的切線(xiàn).
(2)由(1)可知∠3=∠BCO,∠1=∠2,
∵∠ECB=60°,
∴∠3=∠ECB=30°,
∴∠1=∠2=60°,
∴∠4=60°,
∵OA=OD,
∴△OAD是等邊三角形,
∴AD=OD=OF,∵∠1=∠ADO,
在△ADG和△FOG中,
,
∴△ADG≌△FOG,
∴S△ADG=S△FOG,
∵AB=6,
∴⊙O的半徑r=3,
∴S陰=S扇形ODF==.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】多項(xiàng)式 2a3b 3a2 4的項(xiàng)數(shù)和次數(shù)分別為( )
A. 3,3 B. 4,3 C. 3,4 D. 3,6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某果園2014年獼猴桃產(chǎn)量為100噸,2016年獼猴桃產(chǎn)量為150噸,設(shè)該果園獼猴桃產(chǎn)量的年平均增長(zhǎng)率為x,則根據(jù)題意可列方程為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線(xiàn)y=x2-1( )
A.開(kāi)口向上,有最高點(diǎn)B.開(kāi)口向上,有最低點(diǎn)
C.開(kāi)口向下,有最高點(diǎn)D.開(kāi)口向下,有最低點(diǎn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 (2016年福建龍巖第22題)圖1是某公交公司1路車(chē)從起點(diǎn)站A站途經(jīng)B站和C站,最終到達(dá)終點(diǎn)站D站的格點(diǎn)站路線(xiàn)圖.(8×8的格點(diǎn)圖是由邊長(zhǎng)為1的小正方形組成)
(1)求1路車(chē)從A站到D站所走的路程(精確到0.1);
(2)在圖2、圖3和圖4的網(wǎng)格中各畫(huà)出一種從A站到D站的路線(xiàn)圖.(要求:①與圖1路線(xiàn)不同、路程相同;②途中必須經(jīng)過(guò)兩個(gè)格點(diǎn)站;③所畫(huà)路線(xiàn)圖不重復(fù))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com