【題目】如圖,CD AB ,EF AB ,垂足分別為 D、F,1 2 ,若A 65 ,B 45 , 求AGD 的度數(shù).
【答案】AGD 70°.
【解析】
由CD⊥AB,EF⊥AB可得出∠CDF=∠EFB=90°,利用“同位角相等,兩直線平行”可得出CD∥EF,利用“兩直線平行,同位角相等”可得出∠DCB=∠1,結(jié)合∠1=∠2可得出∠DCB=∠2,利用“內(nèi)錯角相等,兩直線平行”可得出DG∥BC,利用“兩直線平行,同位角相等”可得出∠ADG的度數(shù),在△ADG中,利用三角形內(nèi)角和定理即可求出∠AGD的度數(shù).
∵CD⊥AB,EF⊥AB
∴CDF=EFB=90 °
∴CD∥EF
∴DCB=1
∵1=2
∴DCB=2
∴ DG∥BC
∴ADG=B=45 °
又∵在△ADG中,A=65 °,ADG=45 °
∴AGD=180-A-ADG=70°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形中,當(dāng)?shù)走?/span>上的高由小到大變化時,平行四邊形的面積也隨之發(fā)生變化,我們得到如下數(shù)據(jù):
底邊AB上的高x(cm) | 2 | 3 | 4 | 5 |
平行四邊形ABCD的面積y(cm2) | 12 | 18 | 24 | 30 |
(1)在這個變化過程中,自變量、因變量分別是什么?
(2)與之間的關(guān)系式可以表示為 ;
(3)由表格中的數(shù)據(jù)可以發(fā)現(xiàn),當(dāng)每增加時,如何變化?
(4)若平行四邊形的面積為,此時底邊上的高為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=ax+b與反比例函數(shù) (x>0)的圖象交于A(2,4),B(4,n)兩點,與x軸,y軸分別交于C,D兩點.
(1)求m,n的值;
(2)求△AOB的面積;
(3)若線段CD上的點P到x軸,y軸的距離相等.求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:(1)∣—6∣+(—3.14)0—()-2+(—2)3 (2)(-a)3a2+(2a4)2÷a3.
(3) (4)(a-2b)(a+b)-3a(a+b)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】八(3)班在一次班會課上,就“遇見路人摔倒后如何處理”的主題進(jìn)行討論,并對全班50名學(xué)生的處理方式進(jìn)行統(tǒng)計,得出相關(guān)統(tǒng)計表和統(tǒng)計圖(如圖)
組別 | A | B | C | D |
處理方式 | 迅速離開 | 馬上救助 | 視情況而定 | 只看熱鬧 |
人數(shù) | m | 30 | n | 5 |
請根據(jù)表圖所提供的信息回答下列問題:
(1)統(tǒng)計表中的m= ,n= ;
(2)補全頻數(shù)分布直方圖;
(3)若該校有3000名學(xué)生,請據(jù)此估計該校學(xué)生采取“馬上救助”方式的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABCD中,E、F分別是AB、CD的中點,AF與DE相交于點G,CE與BF相交于點H.
(1)求證:四邊形EHFG是平行四邊形;
(2)若四邊形EHFG是矩形,則ABCD應(yīng)滿足什么條件?(不需要證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為改善辦學(xué)條件,北海中學(xué)計劃購買部分品牌電腦和品牌課桌.第一次,用9萬元購買了品牌電腦10臺和品牌課桌200張.第二次,用9萬元購買了品牌電腦12臺和品牌課桌120張.
(1)每臺品牌電腦與每張品牌課桌的價格各是多少元?
(2)第三次購買時,銷售商對一次購買量大的客戶打折銷售.規(guī)定:一次購買品牌電腦35臺以上(含35臺),按九折銷售,一次購買品牌課桌600張以上(含600張),按八折銷售.學(xué)校準(zhǔn)備用27萬元購買電腦和課桌,其中電腦不少于35臺,課桌不少于600張,問有幾種購買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線 (a1>0)與拋物線 (a2<0)都經(jīng)過y軸正半軸上的點A.過點A作x軸的平行線,分別與這兩條拋物線交于B、C兩點,以BC為邊向下作等邊△BCD,則△BCD的面積為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com