【題目】如圖,中,,是角平分線,則的面積與面積的比值是( )

A. B. C. D.

【答案】C

【解析】

根據(jù)等腰三角形的兩個(gè)底角相等和三角形的內(nèi)角和定理,可以求得∠ABC=∠ACB=72°,根據(jù)角平分線定義,可得∠BCD=∠ACD=36°;根據(jù)兩角對(duì)應(yīng)相等,得DBC∽△BCA,則相似三角形的面積比是相似比的平方.設(shè)AB=x,BC=y,根據(jù)等腰三角形的性質(zhì),則AD=CD=BC=y,則BD=x-y.根據(jù)相似三角形的性質(zhì)求得y:x的值即可.

設(shè)AB=x,BC=y.

∵△ABC,AB=AC,A=36°,

∴∠ABC=ACB=72°.

CD是角平分線,

∴∠BCD=ACD=36°.

AD=CD=BC=y,

BD=xy.

∵∠BCD=A=36°,B=ACB=72°,

∴△DBC∽△ABC.

.

x2xyy2=0,

x=y(負(fù)值舍去).

.

∴△DBC的面積與ABC面積的比值是.

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知矩形的邊長(zhǎng),,點(diǎn)邊上的一動(dòng)點(diǎn)不同于,邊上的任意一點(diǎn),連接,過(guò),作.設(shè)的長(zhǎng)為,則的面積關(guān)于的函數(shù)關(guān)系式是(

A. B.

C. . D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:RtABC, ACB=90°,AC=BC, D是線段AB上一點(diǎn),連結(jié)CD,將線段CD繞點(diǎn)C 逆時(shí)針旋轉(zhuǎn)90°得到線段CE,連結(jié)DE,BE.

(1)依題意補(bǔ)全圖形;

(2)用含的代數(shù)式表示

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】等腰RtABC中,BAC90°,ABAC,點(diǎn)A、點(diǎn)B分別是y軸、x軸上兩個(gè)動(dòng)點(diǎn),直角邊ACx軸于點(diǎn)D,斜邊BCy軸于點(diǎn)E;

1)如圖(1),已知C點(diǎn)的橫坐標(biāo)為-1,直接寫(xiě)出點(diǎn)A的坐標(biāo);

2)如圖(2), 當(dāng)?shù)妊?/span>RtABC運(yùn)動(dòng)到使點(diǎn)D恰為AC中點(diǎn)時(shí),連接DE,求證:ADBCDE;

(3)如圖(3), 若點(diǎn)Ax軸上,且A-4,0),點(diǎn)By軸的正半軸上運(yùn)動(dòng)時(shí),分別以OB、AB為直角邊在第一、二象限作等腰直角BOD和等腰直角ABC,連結(jié)CDy軸于點(diǎn)P,問(wèn)當(dāng)點(diǎn)By軸的正半軸上運(yùn)動(dòng)時(shí),BP的長(zhǎng)度是否變化?若變化請(qǐng)說(shuō)明理由,若不變化,請(qǐng)求出BP的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,點(diǎn)CAB中點(diǎn),CDBE,CDBE

1)求證:△ACD≌△CBE;

2)若∠D35°,求∠DCE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD的對(duì)角線ACBD相交于點(diǎn)O,ABAC,AB3,BC5,點(diǎn)P從點(diǎn)A出發(fā),沿AD以每秒1個(gè)單位的速度向終點(diǎn)D運(yùn)動(dòng).連結(jié)PO并延長(zhǎng)交BC于點(diǎn)Q.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.

1)求BQ的長(zhǎng),(用含t的代數(shù)式表示)

2)當(dāng)四邊形ABQP是平行四邊形時(shí),求t的值

3)當(dāng)點(diǎn)O在線段AP的垂直平分線上時(shí),直接寫(xiě)出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】( 1)計(jì)算: ﹣4sin30°+(2015﹣π)0﹣(﹣3)2

(2)先化簡(jiǎn),再求值:1﹣,其中x、y滿足|x﹣2|+(2x﹣y﹣3)2=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,EAB的中點(diǎn),AD//EC,AED=B.

(1)求證:AED≌△EBC;

(2)當(dāng)AB=6時(shí),求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在同一平面內(nèi),若點(diǎn)PABC三個(gè)頂點(diǎn)中的任意兩個(gè)頂點(diǎn)連接形成的三角形都是等腰三角形,則稱點(diǎn)PABC的巧妙點(diǎn).

1)如圖1,求作ABC的巧妙點(diǎn)P(尺規(guī)作圖,不寫(xiě)作法,保留作圖痕跡).

2)如圖2,在ABC中,∠A=80°,AB=AC,求作ABC的所有巧妙點(diǎn)P (尺規(guī)作圖,不寫(xiě)作法,保留作圖痕跡),并直接寫(xiě)出∠BPC的度數(shù)是 .

3)等邊三角形的巧妙點(diǎn)的個(gè)數(shù)有(

A.2 B.6 C.10 D.12

查看答案和解析>>

同步練習(xí)冊(cè)答案