【題目】(幾何背景)如圖1,AD為銳角△ABC的高,垂足為D.求證:AB2﹣AC2=BD2﹣CD2
(知識(shí)遷移)如圖2,矩形ABCD內(nèi)任意一點(diǎn)P,連接PA、PB、PC、PD,請(qǐng)寫出PA、PB、PC、PD之間的數(shù)量關(guān)系,并說(shuō)明理由.
(拓展應(yīng)用)如圖3,矩形ABCD內(nèi)一點(diǎn)P,PC⊥PD,若PA=a,PB=b,AB=c,且a、b、c滿足a2﹣b2=c2,則的值為 (請(qǐng)直接寫出結(jié)果)
【答案】【幾何背景】:詳見(jiàn)解析;【知識(shí)遷移】:詳見(jiàn)解析;【拓展應(yīng)用】:
【解析】
幾何背景:由 Rt△ABD中,AD2=AB2﹣BD2,Rt△ACD中,AD2=AC2﹣CD2,則結(jié)論可證.
知識(shí)遷移:過(guò)P點(diǎn)作PE⊥AD,延長(zhǎng)EP交BC于F,可證四邊形ABFE,四邊形DCFE是矩形.根據(jù)上面的結(jié)論求得PA、PB、PC、PD之間的數(shù)量關(guān)系.
拓展應(yīng)用:根據(jù)勾股定理可列方程組,可求PD=c,PC=c即可得.
解:幾何背景:在Rt△ABD中,AD2=AB2﹣BD2
Rt△ACD中,AD2=AC2﹣CD2,
∴AB2﹣BD2=AC2﹣CD2,
∴AB2﹣AC2=BD2﹣CD2.
知識(shí)遷移:BP2﹣PC2 =BF2﹣CF2.
如 圖:
過(guò)P點(diǎn)作PE⊥AD,延長(zhǎng)EP交BC于F
∴四邊形ABCD是矩形
∴AD∥BC∠BAD=∠ADC=∠DCB=∠ABC=90°
又∵PE⊥AD
∴PF⊥BC
∵PE是△APD的高
∴PA2﹣PD2=AE2﹣DE2.
∵PF是△PBC的高
∴BP2﹣PC2 =BF2﹣CF2.
∵∠BAD=∠ADC=∠DCB=∠ABC=90°,PE⊥AD,PF⊥BC
∴四邊形ABFE,四邊形DCFE是矩形
∴AE=BF,CF=DE
∴PA2﹣PD2=BP2﹣PC2.
拓展應(yīng)用:∵PA2﹣PD2=BP2﹣PC2.
∴PA2﹣PB2=c2.
∴PD2﹣PC2=c2.
且PD2+PC2=c2.
∴PD=c,PC=c
∴,
故答案為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,一次函數(shù)y1=x+2與反比例函數(shù)y2=(x>0)的圖象交于點(diǎn)A(a,5)
(1)確定反比例函數(shù)的表達(dá)式;
(2)結(jié)合圖象,直接寫出x為何值時(shí),y1<y2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩個(gè)共一個(gè)頂點(diǎn)的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,連接AF,M是AF的中點(diǎn),連接MB、ME.
(1)如圖1,當(dāng)CB與CE在同一直線上時(shí),求證:MB∥CF;
(2)如圖1,若CB=a,CE=2a,求BM,ME的長(zhǎng);
(3)如圖2,當(dāng)∠BCE=45°時(shí),求證:BM=ME.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,AB的長(zhǎng)是4,C為⊙O上一點(diǎn),AD和過(guò)點(diǎn)C的切線互相垂直,垂足為D.
(1)求證:AC平分∠DAB;
(2)若cos∠DAC=,求弧BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在第23個(gè)世界讀書日前夕,我市某中學(xué)為了解本校學(xué)生的每周課外閱讀時(shí)間用t表示,單位:小時(shí),采用隨機(jī)抽樣的方法進(jìn)行問(wèn)卷調(diào)查,調(diào)查結(jié)果按,,,分為四個(gè)等級(jí),并依次用A,B,C,D表示,根據(jù)調(diào)查結(jié)果統(tǒng)計(jì)的數(shù)據(jù),繪制成了如圖所示的兩幅不完整的統(tǒng)計(jì)圖,由圖中給出的信息解答下列問(wèn)題:
求本次調(diào)查的學(xué)生人數(shù);
求扇形統(tǒng)計(jì)圖中等級(jí)B所在扇形的圓心角度數(shù),并把條形統(tǒng)計(jì)圖補(bǔ)充完整;
若該校共有學(xué)生1200人,試估計(jì)每周課外閱讀時(shí)間滿足的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,則四邊形ABCD的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)大家閱讀下面兩段材料,并解答問(wèn)題:
材料1:我們知道在數(shù)軸上表示4和1的兩點(diǎn)之間的距離為3(如圖1),而|4﹣1|=3,所以在數(shù)軸上表示4和1的兩點(diǎn)之間的距離為|4﹣1|.
材料2:再如在數(shù)軸上表示4和﹣2的兩點(diǎn)之間的距離為6(如圖2)而|4﹣(﹣2)|=6,所以數(shù)軸上表示數(shù)4和﹣2的兩點(diǎn)之間的距離|4﹣(﹣2)|.
(1)(如圖3)根據(jù)上述規(guī)律,我們可以得出結(jié)論:在數(shù)軸上表示數(shù)a和數(shù)b兩點(diǎn)之間的距離等于 .
(2)試一試,求在數(shù)軸上表示的數(shù)5與﹣4的兩點(diǎn)之間的距離為 .
(3)已知數(shù)軸上表示數(shù)a的點(diǎn)M與表示數(shù)﹣1的點(diǎn)之間的距離為3,表示數(shù)b的點(diǎn)N與表示數(shù)2的點(diǎn)之間的距離為4,求M,N兩點(diǎn)之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一條東西走向的商業(yè)街上,依次有書店(記為A)、冷飲店(記為B)、鞋店(記為C),冷飲店位于鞋店西邊50m處,鞋店位于書店?yáng)|邊60m處,王平先去書店,然后沿著這條街向東走了30m至D處,接著向西走50m到達(dá)E處.
(1)以A為原點(diǎn)、向東為正方向畫數(shù)軸,在數(shù)軸上表示出上述A,B,C,D,E的位置;
(2)若在這條街上建一家超市,使超市與鞋店C分居E點(diǎn)兩側(cè),且到E點(diǎn)的距離相等,問(wèn)超市在冷飲店的什么方向?距離多遠(yuǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了慶祝元旦,學(xué)校準(zhǔn)備舉辦一場(chǎng)“經(jīng)典誦讀”活動(dòng),某班準(zhǔn)備網(wǎng)購(gòu)一些經(jīng)典誦讀本和示讀光盤,誦讀本一套定價(jià)100元,示讀光盤一張定價(jià)20元.元旦期間某網(wǎng)店開(kāi)展促銷活動(dòng),活動(dòng)期間向客戶提供兩種優(yōu)惠方案:
方案A:買一套誦讀本送一張示讀光盤;
方案B:誦讀本和示讀光盤都按定價(jià)的九折付款.
現(xiàn)某班級(jí)要在該網(wǎng)店購(gòu)買誦讀本10套和示讀光盤x張(x>10),解答下列三個(gè)問(wèn)題:
(1)若按方案A購(gòu)買,共需付款 元(用含x的式子表示),
若按方案B購(gòu)買,共需付款 元(用含x的式子表示);
(2)若需購(gòu)買示讀光盤15張(即x=15)時(shí),請(qǐng)通過(guò)計(jì)算說(shuō)明按哪種方案購(gòu)買較為合算;
(3)若需購(gòu)買示讀光盤15張(即x=15)時(shí),你還能給出一種更為省錢的購(gòu)買方法嗎?若能,請(qǐng)寫出你的購(gòu)買方法和所需費(fèi)用.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com