(2013•金華模擬)如圖,拋物線y=
1
2
x2-
5
2
x與x軸交于O,A兩點.半徑為1的動圓(⊙P),圓心從O點出發(fā)沿拋物線向靠近點A的方向移動;半徑為2的動圓(⊙Q),圓心從A點出發(fā)沿拋物線向靠近點O的方向移動.兩圓同時出發(fā),且移動速度相等,當運動到P,Q兩點重合時同時停止運動.設點P的橫坐標為t.
(1)點Q的橫坐標是
5-t
5-t
(用含t的代數(shù)式表示);
(2)若⊙P與⊙Q相離,則t的取值范圍是
0≤t<1或2<t≤
5
2
0≤t<1或2<t≤
5
2
分析:(1)連接OP、PQ、AQ.先根據(jù)拋物線的對稱性,得出y=
1
2
x2-
5
2
x與x軸的兩個交點O與A關于拋物線的對稱軸x=
5
2
對稱,再證明四邊形OPQA是等腰梯形,作等腰梯形OPQA的高PM、QN,根據(jù)等腰梯形的性質得出OM=AN=t.然后解方程
1
2
x2-
5
2
x=0,求出OA=5,進而得出點Q的橫坐標是5-t;
(2)⊙P與⊙Q相離,包含兩種情況:①⊙P與⊙Q外離,根據(jù)兩圓外離時,圓心距>兩圓半徑之和求解;②⊙P與⊙Q內含,根據(jù)兩圓內含時,圓心距<兩圓半徑之差的絕對值求解.
解答:解:(1)連接OP、PQ、AQ.
∵拋物線y=
1
2
x2-
5
2
x與x軸交于O,A兩點,
∴O與A關于拋物線的對稱軸x=
5
2
對稱,
又∵動圓(⊙P)的圓心從O點出發(fā)沿拋物線向靠近點A的方向移動;動圓(⊙Q)的圓心從A點出發(fā)沿拋物線向靠近點O的方向移動,兩圓同時出發(fā),且移動速度相等,
∴OP=AQ,P與Q也關于直線x=
5
2
對稱,
∴四邊形OPQA是等腰梯形.
作等腰梯形OPQA的高PM、QN,則OM=AN=t.
解方程
1
2
x2-
5
2
x=0,得x1=0,x2=5,
∴A(5,0),OA=5,
∴ON=OA-AN=5-t,
∴點Q的橫坐標是5-t;

(2)若⊙P與⊙Q相離,分兩種情況:
①⊙P與⊙Q外離,則PQ>2+1,即PQ>3.
∵OM=AN=t,OA=5,
∴PQ=MN=OA-OM-AN=5-2t,
∴5-2t>3,
解得t<1,
又∵t≥0,
∴0≤t<1;
②⊙P與⊙Q內含,則PQ<2-1,即PQ<1.
由①知PQ=5-2t,
∴5-2t<1,
解得t>2,
又∵兩圓分別從O、A兩點同時出發(fā),且移動速度相等,當運動到P,Q兩點重合時同時停止運動,OA=5,點P的橫坐標為t,
∴2t≤5,解得t≤
5
2

∴2<t≤
5
2

故答案為5-t;0≤t<1或2<t≤
5
2
點評:本題借助于動點主要考查了二次函數(shù)的性質,等腰梯形的性質,圓與圓的位置關系,題型比較新穎,難度適中.利用二次函數(shù)的對稱性等證明四邊形OPQA是等腰梯形是解(1)題的關鍵;進行分類討論是解(2)題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•金華模擬)已知a+b=3,ab=-1,則a2b+ab2=
-3
-3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•金華模擬)-
1
2
的倒數(shù)為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•金華模擬)已知:如圖,在坡度為i=1:2.4的斜坡BQ上有一棵香樟樹PQ,柳明在A處測得樹頂點P的仰角為α,并且測得水平的AB=8米,另外BQ=13米,tanα=0.75.點A、B、P、Q在同一平面上,PQ⊥AB.求:香樟樹PQ的高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•金華模擬)下列各數(shù)中,負數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•金華模擬)一個不透明口袋中裝有三個除了標號外其余完全相同的小球,小球上分別標有數(shù)字2,3,3,從中隨機取出一個小球,用a表示所取出小球上標有的數(shù)字;所取小球不放回,然后再取出一個,用b表示此次所取出小球上的數(shù)字,構成函數(shù)y=ax-2和y=x+b(a≠b),則這樣的有序數(shù)對(a,b)使這兩個函數(shù)圖象的交點落在直線x=2的左側的概率為
0
0

查看答案和解析>>

同步練習冊答案