(2011•遼陽)如圖,等邊△ABC的邊長為4,M為BC上一動點(diǎn)(M不與B、C重合),若EB=1,∠EMF=60°,點(diǎn)E在AB邊上,點(diǎn)F在AC邊上.設(shè)BM=x,CF=y,則當(dāng)點(diǎn)M從點(diǎn)B運(yùn)動到點(diǎn)C時(shí),y關(guān)于x的函數(shù)圖象是(  )
分析:利用等邊三角形的性質(zhì)和已知條件求得∠BEM=∠CMF,證得△BEM∽△CMF,利用相似三角形對應(yīng)邊成比例得到兩變量之間的函數(shù)關(guān)系式即可確定其圖象.
解答:解:∵△ABC為等邊三角形,
∴∠B=∠C=60°,
∴∠BEM+∠BME=∠FMC+∠MFC=120°,
∵∠EMF=60°,
∴∠EMB+∠FMC=120°,
∴∠BEM=∠CMF,
∴△BEM∽△CMF,
BE
CM
=
BM
CF

設(shè)BM=x,CF=y,
∴CM=4-x,
1
4-x
=
x
y
,
整理得:y=-x2+4x=-(x-2)2+4,
故選B.
點(diǎn)評:考查了動點(diǎn)問題的函數(shù)圖象,此題為動點(diǎn)函數(shù)問題,關(guān)鍵列出動點(diǎn)的函數(shù)關(guān)系,再判斷選項(xiàng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2011•遼陽)如圖,⊙O經(jīng)過點(diǎn)B、D、E,BD是⊙O的直徑,∠C=90°,BE平分∠ABC.
(1)試說明直線AC是⊙O的切線;
(2)當(dāng)AE=4,AD=2時(shí),求⊙O的半徑及BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•遼陽)如圖,已知等邊△ABC的面積為1,D、E分別為AB、AC的中點(diǎn),若向圖中隨機(jī)拋擲一枚飛鏢,飛鏢落在陰影區(qū)域的概率是(不考慮落在線上的情形)( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•遼陽)如圖,AB為⊙O直徑,CD⊥AB,∠BDC=35°,則∠CAD=
70°
70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•遼陽)如圖,已知菱形ABCD的邊長為2,∠BAD=60°,若DE⊥AB,垂足為點(diǎn)E,則DE的長為
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•遼陽)如圖,已知Rt△ABO,∠BAO=90°,以點(diǎn)O為坐標(biāo)原點(diǎn),OA所在直線為y軸,建立平面直角坐標(biāo)系,AO=3,∠AOB=30°,將Rt△ABO沿OB翻折后,點(diǎn)A落在第一象限內(nèi)的點(diǎn)D處.
(1)求D點(diǎn)坐標(biāo);
(2)若拋物線y=ax2+bx+3(a≠0)經(jīng)過B、D兩點(diǎn),求此拋物線的表達(dá)式;
(3)若拋物線的頂點(diǎn)為E,它的對稱軸與OB交于點(diǎn)F,點(diǎn)P為射線OB上一動點(diǎn),過點(diǎn)P作y軸的平行線,交拋物線于點(diǎn)M.是否存在點(diǎn)P,使得以E、F、M、P為頂點(diǎn)的四邊形為等腰梯形?若存在,請求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.
參考公式:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)是(-
b
2a
4ac-b2
4a
).

查看答案和解析>>

同步練習(xí)冊答案