經(jīng)過點(diǎn)P(-1,2)的雙曲線的解析式為( )
A.y=
B.y=-
C.y=-
D.y=-
【答案】分析:設(shè)出反比例函數(shù)的解析式,把(-1,2)代入解析式,求出k的值,即可得到反比例函數(shù)的解析式.
解答:解:設(shè)函數(shù)解析式為y=
把(-1,2)代入解析式,得k=-1×2=-2.
解析式為y==-
故選D
點(diǎn)評:此題比較簡單,考查的是用待定系數(shù)法求反比例函數(shù)的解析式,是中學(xué)階段的重點(diǎn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

若反比例函數(shù)y=
k
x
(k<0)的圖象經(jīng)過點(diǎn)(-2,a),(-1,b),(3,c),則a,b,c的大小關(guān)系為( 。
A、c>a>b
B、b>a>c
C、a>b>c
D、c>b>a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線頂點(diǎn)D (0,
1
8
),且經(jīng)過點(diǎn)A(1,
17
8
).
(1)求這條拋物線的解析式;
(2)點(diǎn)F是坐標(biāo)原點(diǎn)O關(guān)于該拋物線頂點(diǎn)的對稱點(diǎn),坐標(biāo)為(0,
1
4
).我們可以用以下方法求線段FA的長度;過點(diǎn)A作AA1⊥x軸,過點(diǎn)F作x軸的平行線,交AA1于A2,則FA2=1,A2A=
17
8
-
1
4
=
15
8
,在Rt△AFA2中,有FA=
12+(
15
8
)2
=
17
8
.已知拋物線上另一點(diǎn)B的橫坐標(biāo)為2,求線段FB的長;
(3)若點(diǎn)P是該拋物線在第一象限上的任意一點(diǎn),試探究線段FP的長度與點(diǎn)P縱坐標(biāo)的大小關(guān)系,并證明你的猜想.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直線y=-x+2與x軸、y軸分別交于點(diǎn)A和點(diǎn)B,另已知直線y=kx+b(k≠0)經(jīng)過精英家教網(wǎng)點(diǎn)C(1,0),且把△AOB分成兩部分.
(1)若△AOB被分成的兩部分面積相等,求k和b的值;
(2)若△AOB被分成的兩部分面積比為1:5,求k和b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知一次函數(shù)y=kx+b的圖象經(jīng)過點(diǎn)(-1,-5),且與函數(shù)y=
1
2
x+1
的圖象相交于點(diǎn)A(
8
3
,a)

(1)求a的值;
(2)求不等式組0<kx+b<
1
2
x+1
的正整數(shù)解;
(3)若函數(shù)y=kx+b圖象與x軸的交點(diǎn)是B,函數(shù)y=
1
2
x+1
的圖象與y軸的交點(diǎn)是C,求四邊形ABOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

直線y=kx+b經(jīng)過點(diǎn)A(0,1),B(-3,0),點(diǎn)P是這條直線上的一個(gè)動點(diǎn),以P精英家教網(wǎng)為圓心的圓與x軸相切于點(diǎn)C.
(1)求直線AB的解析式;
(2)設(shè)點(diǎn)P的橫坐標(biāo)為t,若⊙P與y軸相切,求t的值;
(3)是否存在點(diǎn)P,使⊙P與y軸兩交點(diǎn)間的距離恰好等于2?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案