【題目】在平面直角坐標系xOy中,若點P的橫坐標和縱坐標相等,則稱點P為完美點.已知二次函數(shù)的圖象上有且只有一個完美點,且當時,函數(shù)的最小值為﹣3,最大值為1,則m的取值范圍是( 。

A. B. C. D.

【答案】C

【解析】

根據(jù)完美點的概念令ax2+4x+c=x,即ax2+3x+c=0,由題意方程有兩個相等的實數(shù)根,求得4ac=9,再根據(jù)方程的根為=,從而求得a=-1,c=-,所以函數(shù)y=ax2+4x+c-=-x2+4x-3,根據(jù)函數(shù)解析式求得頂點坐標與縱坐標的交點坐標,根據(jù)y的取值,即可確定x的取值范圍.

解:令ax2+4x+c=x,即ax2+3x+c=0,
由題意,△=32-4ac=0,即4ac=9,
又方程的根為=,
解得a=-1,c=-,
故函數(shù)y=ax2+4x+c-=-x2+4x-3,
如圖,該函數(shù)圖象頂點為(2,1),與y軸交點為(0,-3),由對稱性,該函數(shù)圖象也經(jīng)過點(4,-3).

由于函數(shù)圖象在對稱軸x=2左側(cè)yx的增大而增大,在對稱軸右側(cè)yx的增大而減小,且當0xm時,函數(shù)y=-x2+4x-3的最小值為-3,最大值為1,
2m4
故選:C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+c的圖象與x軸交于點A(﹣1,0)和Bm0),且3m4,則下列說法:①b0;②a+cb;③b24ac;④2b3c;⑤1,正確的是( 。

A.①②④B.①③⑤C.②③④D.②③⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,四邊形ABCD的對角線ACBD相交于點E,AD=DC,DC2=DEDB,求證:

(1)BCE∽△ADE;

(2)ABBC=BDBE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,邊長為5的等邊三角形ABC中,M是高CH所在直線上的一個動點,連接MB,將線段BM繞點B逆時針旋轉(zhuǎn)60°得到BN,連接HN.則在點M運動過程中,線段HN長度的最小值是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知頂點為(﹣3,﹣6)的拋物線y=ax2+bx+c經(jīng)過點(﹣1,﹣4),則下列結(jié)論中錯誤的是(  )

A. b2>4ac

B. ax2+bx+c≥﹣6

C. 若點(﹣2,m),(﹣5,n)在拋物線上,則m>n

D. 關于x的一元二次方程ax2+bx+c=﹣4的兩根為﹣5和﹣1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=﹣x+5的圖象與坐標軸交于A,B兩點,與反比例函數(shù)y的圖象交于M,N兩點,過點MMCy軸于點C,且CM1,過點NNDx軸于點D,且DN1.已知點Px軸(除原點O外)上一點.

1)直接寫出M、N的坐標及k的值;

2)將線段CP繞點P按順時針或逆時針旋轉(zhuǎn)90°得到線段PQ,當點P滑動時,點Q能否在反比例函數(shù)的圖象上?如果能,求出所有的點Q的坐標;如果不能,請說明理由;

3)當點P滑動時,是否存在反比例函數(shù)圖象(第一象限的一支)上的點S,使得以P、S、M、N四個點為頂點的四邊形是平行四邊形?若存在,請直接寫出符合題意的點S的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩臺機器共同加工一批零件,一共用了小時.在加工過程中乙機器因故障停止工作,排除故障后,乙機器提高了工作效率且保持不變,繼續(xù)加工.甲機器在加工過程中工作效率保持不變.甲、乙兩臺機器加工零件的總數(shù)(個)與甲加工時間之間的函數(shù)圖象為折線,如圖所示.

1)這批零件一共有   個,甲機器每小時加工   個零件,乙機器排除故障后每小時加工   個零件;

2)當時,求之間的函數(shù)解析式;

3)在整個加工過程中,甲加工多長時間時,甲與乙加工的零件個數(shù)相等?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在正方形ABCD中,GCD上一點,延長BCE,使CE=CG,連接BG并延長交DEF.

(1)求證:△BCG≌△DCE;

(2)將△DCE繞點D順時針旋轉(zhuǎn)90°得到△DAE′,判斷四邊形E′BGD是什么特殊四邊形,并說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:在平面直角坐標系中,點.

(1)尺規(guī)作圖:求作過三點的圓;

(2)設過三點的圓的圓心為M,利用網(wǎng)格,求點M的坐標;

(3)若直線相交,直接寫出的取值范圍.

查看答案和解析>>

同步練習冊答案