(2010•深圳)如圖所示,點(diǎn)P(3a,a)是反比例函數(shù)y=(k>0)與⊙O的一個交點(diǎn),圖中陰影部分的面積為10π,則反比例函數(shù)的解析式為( )

A.y=
B.y=
C.y=
D.y=
【答案】分析:根據(jù)P(3a,a)和勾股定理,求出圓的半徑,進(jìn)而表示出圓的面積,再根據(jù)圓的面積等于陰影部分面積的四倍,求出圓的面積,建立等式即可求出a的值,從而得出反比例函數(shù)的解析式.
解答:解:由于函數(shù)圖象關(guān)于原點(diǎn)對稱,所以陰影部分面積為圓面積,
則圓的面積為10π×4=40π.
因?yàn)镻(3a,a)在第一象限,則a>0,3a>0,
根據(jù)勾股定理,OP==a.
于是π=40π,a=±2,(負(fù)值舍去),故a=2.
P點(diǎn)坐標(biāo)為(6,2).
將P(6,2)代入y=,
得:k=6×2=12.
反比例函數(shù)解析式為:y=
故選D.
點(diǎn)評:此題是一道綜合題,既要能熟練正確求出圓的面積,又要會用待定系數(shù)法求函數(shù)的解析式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年廣東省茂名市化州市文樓鎮(zhèn)第一中學(xué)中考數(shù)學(xué)二模試卷(解析版) 題型:選擇題

(2010•深圳)如圖所示,點(diǎn)P(3a,a)是反比例函數(shù)y=(k>0)與⊙O的一個交點(diǎn),圖中陰影部分的面積為10π,則反比例函數(shù)的解析式為( )

A.y=
B.y=
C.y=
D.y=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年中考數(shù)學(xué)實(shí)戰(zhàn)試卷(A卷)(解析版) 題型:解答題

(2010•深圳)如圖所示,拋物線y=ax2+c(a>0)經(jīng)過梯形ABCD的四個頂點(diǎn),梯形的底AD在x軸上,其中A(-2,0),B(-1,-3).
(1)求拋物線的解析式;
(2)點(diǎn)M為y軸上任意一點(diǎn),當(dāng)點(diǎn)M到A,B兩點(diǎn)的距離之和為最小時,求此時點(diǎn)M的坐標(biāo);
(3)在第(2)問的結(jié)論下,拋物線上的點(diǎn)P使S△PAD=4S△ABM成立,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2010•深圳)如圖所示,拋物線y=ax2+c(a>0)經(jīng)過梯形ABCD的四個頂點(diǎn),梯形的底AD在x軸上,其中A(-2,0),B(-1,-3).
(1)求拋物線的解析式;
(2)點(diǎn)M為y軸上任意一點(diǎn),當(dāng)點(diǎn)M到A,B兩點(diǎn)的距離之和為最小時,求此時點(diǎn)M的坐標(biāo);
(3)在第(2)問的結(jié)論下,拋物線上的點(diǎn)P使S△PAD=4S△ABM成立,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年廣東省深圳市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•深圳)如圖所示,拋物線y=ax2+c(a>0)經(jīng)過梯形ABCD的四個頂點(diǎn),梯形的底AD在x軸上,其中A(-2,0),B(-1,-3).
(1)求拋物線的解析式;
(2)點(diǎn)M為y軸上任意一點(diǎn),當(dāng)點(diǎn)M到A,B兩點(diǎn)的距離之和為最小時,求此時點(diǎn)M的坐標(biāo);
(3)在第(2)問的結(jié)論下,拋物線上的點(diǎn)P使S△PAD=4S△ABM成立,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案