【題目】在平面內(nèi)由極點(diǎn)、極軸和極徑組成的坐標(biāo)系叫做極坐標(biāo)系.如圖,在平面上取定一點(diǎn)O稱(chēng)為極點(diǎn);從點(diǎn)O出發(fā)引一條射線Ox稱(chēng)為極軸;線段OP的長(zhǎng)度稱(chēng)為極徑.點(diǎn)P的極坐標(biāo)就可以用線段OP的長(zhǎng)度以及從Ox轉(zhuǎn)動(dòng)到OP的角度(規(guī)定逆時(shí)針?lè)较蜣D(zhuǎn)動(dòng)角度為正)來(lái)確定,即P360°)或P3,﹣300°)或P3,420°)等,則點(diǎn)P關(guān)于點(diǎn)O成中心對(duì)稱(chēng)的點(diǎn)Q的極坐標(biāo)表示不正確的是( 。

A. Q3,-120°)B. Q3,240°)C. Q3,-500°)D. Q3600°)

【答案】C

【解析】

根據(jù)中心對(duì)稱(chēng)的性質(zhì)進(jìn)行解答即可.

P(360°)P(3,﹣300°)P(3,420°)

∴點(diǎn)P關(guān)于點(diǎn)O成中心對(duì)稱(chēng)的點(diǎn)Q的極坐標(biāo)為Q(3,240°)(3,-120°)(3600°)

C選項(xiàng)不正確,

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】移動(dòng)互聯(lián)網(wǎng)是現(xiàn)代通信平臺(tái),可以實(shí)現(xiàn)手機(jī)之間的私密互聯(lián),任意兩臺(tái)手機(jī)私密互聯(lián)構(gòu)成一條連接通路.

1)若臺(tái)手機(jī)、、同時(shí)私密互聯(lián),請(qǐng)畫(huà)出圖形,并用線段表示構(gòu)成的所有連接通路:

2)若臺(tái)手機(jī)、、、同時(shí)私密互聯(lián),形成幾條連接通路?

3)若臺(tái)手機(jī)同時(shí)私密互聯(lián),形成幾條連接通路?請(qǐng)用含的式子表示.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】同學(xué)們知道,|83|表示83的差的絕對(duì)值,也可理解為數(shù)軸上表示數(shù)83兩點(diǎn)間的距離.試探索:

1)填空:|8+3|表示數(shù)軸上數(shù)8與數(shù)   兩點(diǎn)間的距離;

2|x+5|+|x2|表示數(shù)軸上數(shù)x與數(shù)   的距離和數(shù)x與數(shù)   的距離的和.

3)滿足|x+5|+|x2|7的所有整數(shù)x的值是   

4)由以上探索猜想對(duì)于任何有理數(shù)x,|x3|+|x6|是否有最小值?如果有寫(xiě)出最小值;如果沒(méi)有,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形ABCD中,CE平分∠BCD,交直線AD于點(diǎn)E,若CD=6,AE=2,則tan∠ACE=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一工地計(jì)劃租用甲、乙兩輛車(chē)清理淤泥,從運(yùn)輸量來(lái)估算,若租兩車(chē)合運(yùn),10天可以完成任務(wù),若甲車(chē)的效率是乙車(chē)效率的2倍.

甲、乙兩車(chē)單獨(dú)完成任務(wù)分別需要多少天?

已知兩車(chē)合運(yùn)共需租金65000元,甲車(chē)每天的租金比乙車(chē)每天的租金多1500試問(wèn):租甲乙車(chē)兩車(chē)、單獨(dú)租甲車(chē)、單獨(dú)租乙車(chē)這三種方案中,哪一種租金最少?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在數(shù)軸上有A、B、C、D四個(gè)點(diǎn),分別對(duì)應(yīng)的數(shù)為a,b,c,d,且滿足a,b是方程|x+7|=1的兩個(gè)解(a<b),且(c﹣12)2|d﹣16|互為相反數(shù).

(1)填空:a=   、b=   、c=   、d=   ;

(2)若線段AB3個(gè)單位/秒的速度向右勻速運(yùn)動(dòng),同時(shí)線段CD1單位長(zhǎng)度/秒向左勻速運(yùn)動(dòng),并設(shè)運(yùn)動(dòng)時(shí)間為t秒,A、B兩點(diǎn)都運(yùn)動(dòng)在CD上(不與C,D兩個(gè)端點(diǎn)重合),若BD=2AC,求t得值;

(3)在(2)的條件下,線段AB,線段CD繼續(xù)運(yùn)動(dòng),當(dāng)點(diǎn)B運(yùn)動(dòng)到點(diǎn)D的右側(cè)時(shí),問(wèn)是否存在時(shí)間t,使BC=3AD?若存在,求t得值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,點(diǎn)P是線段AD上一動(dòng)點(diǎn),OBD的中點(diǎn),PO的延長(zhǎng)線交BCQ

1)求證:四邊形PBQD是平行四邊形;

2)若AD8cmAB6cm,P從點(diǎn)A出發(fā),以1cm/秒的速度向D運(yùn)動(dòng)(不與D重合),設(shè)點(diǎn)P運(yùn)動(dòng)時(shí)間為t秒.

①請(qǐng)用t表示PD的長(zhǎng);②求t為何值時(shí),四邊形PBQD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)軸上,點(diǎn)A,B,C表示的數(shù)分別是-6,10,12.點(diǎn)A以每秒3個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),同時(shí)線段BC以每秒1個(gè)單位長(zhǎng)度的速度也向右運(yùn)動(dòng).

(1)運(yùn)動(dòng)前線段AB的長(zhǎng)度為________;

(2)當(dāng)運(yùn)動(dòng)時(shí)間為多長(zhǎng)時(shí),點(diǎn)A和線段BC的中點(diǎn)重合?

(3)試探究是否存在運(yùn)動(dòng)到某一時(shí)刻,線段AB=AC?若存在,求出所有符合條件的點(diǎn)A表示的數(shù);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知AB是⊙O的直徑,弦CDABH,過(guò)CD延長(zhǎng)線上一點(diǎn)E作⊙O的切線交AB的延長(zhǎng)線于F,切點(diǎn)為G,連接AGCDK

1)如圖1,求證:KE=GE

2)如圖2,連接CABG,若∠FGB=ACH,求證:CAFE;

3)如圖3,在(2)的條件下,連接CGAB于點(diǎn)N,若sinE=,AK=,求CN的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案