如圖,∠PQR等于138°,SQ⊥QR,QT⊥PQ.則∠SQT等于(  )
A.42°B.64°C.48°D.24°

∵∠PQR等于138°,QT⊥PQ,
∴∠PQS=138°-90°=48°,
又∵SQ⊥QR,
∴∠PQT=90°,
∴∠SQT=42°.
故選A.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知∠DOC=42°,OD平分∠AOC,∠BOD=14°,求∠AOB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知將一幅三角板(直角三角板OAB和直角板OCD,∠AOB=90°,∠ABO=45°,∠CDO=90°,∠COD=30°)
(1)如圖1擺放,點(diǎn)O、A、C在一條直線(xiàn)上,∠BOD的度數(shù)是______;
(2)如圖2,變化擺放位置將直角三角板COD繞點(diǎn)O逆時(shí)針?lè)较蜣D(zhuǎn)動(dòng),若要OB恰好平分∠COD,則∠AOC的度數(shù)是______;
(3)如圖3,當(dāng)三角板OCD擺放在∠AOB內(nèi)部時(shí),作射線(xiàn)OM平分∠AOC.射線(xiàn)ON平分∠BOD,如果三角板OCD在∠AOB內(nèi)繞點(diǎn)O任意轉(zhuǎn)動(dòng),∠MON的度數(shù)是否發(fā)生變化?如果不變,求其值;如果變化,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖∠ABC=30°,∠CBD=70°,BE是∠ABD的平分線(xiàn),求∠DBE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知∠AOB=70°,∠BOC=20°,則∠AOC=______°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

用一副三角板不能畫(huà)出的角為( 。
A.75゜B.95゜C.105゜D.165゜

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,將射線(xiàn)OX繞點(diǎn)O按逆時(shí)針旋轉(zhuǎn)n°的角,得到射線(xiàn)OY,如果點(diǎn)P為射線(xiàn)OY上一點(diǎn),且OP=a,那么我們就規(guī)定用(a,n°)表示點(diǎn)P在平面內(nèi)的位置,并記為P(a,n°).例如在圖2中,如果OM=6,∠XOM=200°,那么點(diǎn)M在平面內(nèi)的位置記為M(6,200°).
根據(jù)上述規(guī)定解答下列問(wèn)題:
(1)在圖3中,如果點(diǎn)N在平面內(nèi)的位置記為N(10,35°),那么ON=______,∠XON=______°.
(2)將圖3中的射線(xiàn)OY繞點(diǎn)O旋轉(zhuǎn)一定的角度(小于360度),使得旋轉(zhuǎn)后所得到的射線(xiàn)OZ與射線(xiàn)OY垂直,則旋轉(zhuǎn)后點(diǎn)N在平面內(nèi)的位置可記為_(kāi)_____,請(qǐng)?jiān)趫D3中畫(huà)出旋轉(zhuǎn)后的圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠AOC和∠COB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,點(diǎn)O在直線(xiàn)AB上,OC⊥OD,若∠1=50°,則∠2=______度.

查看答案和解析>>

同步練習(xí)冊(cè)答案