【題目】如圖,在平行四邊形ABCD中,AD=2AB,CE平分∠BCD,延長(zhǎng)CEBA交于點(diǎn)F,連接AC、DF

1)如圖1,求證:四邊形ACDF是平行四邊形;

2)如圖2,連接BE,若CF=4,tanFBE=,求AE的長(zhǎng).

【答案】(1)詳見(jiàn)解析;(2)5.

【解析】

1)根據(jù)平行四邊形的性質(zhì)和角平分線的性質(zhì)可得BF=BC=AD ,然后可得AF=CD,因?yàn)?/span>ABCD,所以四邊形ACDF是平行四邊形;

2)根據(jù)平行四邊形的性質(zhì)可求出EF,根據(jù)三角函數(shù)即可求出BE的長(zhǎng),易求BF的長(zhǎng),問(wèn)題得解.

解:(1)證明:∵四邊形ABCD是平行四邊形,

AD=BC,AB=CD,ABCD

∴∠DCF=BFC

又∵CE平分∠BCD,

∴∠BCF=FCD,

∴∠BFC=BCF,

BF=BC=AD,

AD=2AB

BF=2AB,

AB=AF=CD

又∵ABCD,

∴四邊形ACDF是平行四邊形;

2)解: ∵四邊形ACDF是平行四邊形

EF=CE=,

又∵BF=BC

BECF

tanFBE=

BE=,

BF=10,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖網(wǎng)格圖中,每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位,在RtABC中,∠C90°,AC3,BC4

1)試在圖中作出△ABCA為旋轉(zhuǎn)中心,沿順時(shí)針?lè)较蛐D(zhuǎn)90°后的圖形△AB1C1;

2)若點(diǎn)B的坐標(biāo)為(﹣3,5),試在圖中畫(huà)出直角坐標(biāo)系,并直接寫(xiě)出A、C兩點(diǎn)的坐標(biāo);

3)根據(jù)(2)的坐標(biāo)系作出與△ABC關(guān)于原點(diǎn)對(duì)稱的圖形△A2B2C2,并直接寫(xiě)出點(diǎn)A2B2、C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 如圖,在RtABC中,∠ACB=90°AC=BC.點(diǎn)PAB邊上一點(diǎn),QBC邊上一點(diǎn),且∠BPQ=APC,過(guò)點(diǎn)AADPC,交BC于點(diǎn)D,直線AD分別交直線PC、PQEF

1)求證:∠FDQ=FQD;

2)把DFQ沿DQ邊翻折,點(diǎn)F剛好落在AB邊上點(diǎn)G,設(shè)PC分別交GQ、GDM、N,試判定MNEN的數(shù)量關(guān)系,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)學(xué)活動(dòng)課上,老師提出了一個(gè)問(wèn)題:把一副三角尺如圖擺放,直角三角尺的兩條直角邊分別垂直或平行,60°角的頂點(diǎn)在另一個(gè)三角尺的斜邊上移動(dòng),在這個(gè)運(yùn)動(dòng)過(guò)程中,有哪些變量,能研究它們之間的關(guān)系嗎?

小林選擇了其中一對(duì)變量,根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)它們之間的關(guān)系進(jìn)行了探究.

下面是小林的探究過(guò)程,請(qǐng)補(bǔ)充完整:

1)畫(huà)出幾何圖形,明確條件和探究對(duì)象;

如圖2,在RtABC中,∠C=90°,AC=BC=6cm,D是線段AB上一動(dòng)點(diǎn),射線DEBC于點(diǎn)E,∠EDF=60°,射線DF與射線AC交于點(diǎn)F.設(shè)BE兩點(diǎn)間的距離為xcm,EF兩點(diǎn)間的距離為ycm

2)通過(guò)取點(diǎn)、畫(huà)圖、測(cè)量,得到了xy的幾組值,如下表:

x/cm

0

1

2

3

4

5

6

y/cm

6.9

5.3

4.0

3.3

4.5

6

(說(shuō)明:補(bǔ)全表格時(shí)相關(guān)數(shù)據(jù)保留一位小數(shù))

3)建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫(huà)出該函數(shù)的圖象;

4)結(jié)合畫(huà)出的函數(shù)圖象,解決問(wèn)題:當(dāng)DEF為等邊三角形時(shí),BE的長(zhǎng)度約為 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校一課外活動(dòng)小組為了了解學(xué)生最喜歡的球類運(yùn)動(dòng)況,隨機(jī)抽查了本校九年級(jí)的200名學(xué)生,調(diào)查的結(jié)果如圖所示,請(qǐng)根據(jù)該扇形統(tǒng)計(jì)圖解答以下問(wèn)題:

(1)圖中的值是________;

(2)被查的200名生中最喜歡球運(yùn)動(dòng)的學(xué)生有________人;

(3)若由3名最喜歡籃球運(yùn)動(dòng)的學(xué)生(記為),1名最喜歡乒乓球運(yùn)動(dòng)的學(xué)生(記為),1名最喜歡足球運(yùn)動(dòng)的學(xué)生(記為)組隊(duì)外出參加一次聯(lián)誼活動(dòng).欲從中選出2人擔(dān)任組長(zhǎng)(不分正副),列出所有可能情況,并求2人均是最喜歡籃球運(yùn)動(dòng)的學(xué)生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】校體育組為了解全校學(xué)生“最喜歡的一項(xiàng)球類項(xiàng)目”,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的不完整的統(tǒng)計(jì)圖:

請(qǐng)你根據(jù)統(tǒng)計(jì)圖回答下列問(wèn)題:

(1)喜歡乒乓球的學(xué)生所占的百分比是多少?并請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

(2)請(qǐng)你估計(jì)全校500名學(xué)生中最喜歡“排球”項(xiàng)目的有多少名?

(3)在扇形統(tǒng)計(jì)圖中,“籃球”部分所對(duì)應(yīng)的圓心角是多少度?

(4)籃球教練在制定訓(xùn)練計(jì)劃前,將從最喜歡籃球項(xiàng)目的甲、乙、丙、丁四名同學(xué)中任選兩人進(jìn)行個(gè)別座談,請(qǐng)用列表法或樹(shù)狀圖法求抽取的兩人恰好是甲和乙的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),AD和過(guò)點(diǎn)C的切線互相垂直,垂足為D.

(1)求證:AC平分∠DAB;

(2)若CD=4,AD=8,試求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在圓O中,弦AB8,點(diǎn)C在圓O(CAB不重合),連接CACB,過(guò)點(diǎn)O分別作ODAC,OEBC,垂足分別是點(diǎn)D、E

(1)求線段DE的長(zhǎng);

(2)點(diǎn)OAB的距離為3,求圓O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】超市銷售某種兒童玩具,如果每件利潤(rùn)為40元(市場(chǎng)管理部門規(guī)定,該種玩具每件利潤(rùn)不能超過(guò)60元),每天可售出50件.根據(jù)市場(chǎng)調(diào)查發(fā)現(xiàn),銷售單價(jià)每增加2元,每天銷售量會(huì)減少1件.設(shè)銷售單價(jià)增加元,每天售出件.

1)請(qǐng)寫(xiě)出之間的函數(shù)表達(dá)式;

2)當(dāng)為多少時(shí),超市每天銷售這種玩具可獲利潤(rùn)2250元?

3)設(shè)超市每天銷售這種玩具可獲利元,當(dāng)為多少時(shí)最大,最大值是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案